BonelliLab commited on
Commit
f2491fc
Β·
1 Parent(s): e212f94

docs: Add comprehensive research roadmap and Phase 1 plan

Browse files

- Created RESEARCH_ROADMAP.md with 12 cutting-edge AI features
- References 20+ recent papers (2017-2024)
- Detailed implementations for RAG, attention viz, ToT reasoning
- Added PHASE1_IMPLEMENTATION.md with concrete 3-day build plan
- Positions as research lab showcasing SOTA AI/ML techniques
- Includes paper citations, uncertainty quantification, safety systems

Files changed (2) hide show
  1. PHASE1_IMPLEMENTATION.md +427 -0
  2. RESEARCH_ROADMAP.md +646 -0
PHASE1_IMPLEMENTATION.md ADDED
@@ -0,0 +1,427 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # πŸš€ Phase 1 Implementation Plan - Research Features
2
+
3
+ ## Quick Wins: Build These First (2-3 days)
4
+
5
+ ### Priority 1: RAG Pipeline Visualization ⭐⭐⭐
6
+ **Why:** Shows research credibility, transparency, visual appeal
7
+ **Effort:** Medium
8
+ **Impact:** High
9
+
10
+ #### Implementation Steps:
11
+
12
+ 1. **Backend: Track RAG stages** (`api/rag_tracker.py`)
13
+ ```python
14
+ class RAGTracker:
15
+ def __init__(self):
16
+ self.stages = []
17
+
18
+ def track_query_encoding(self, query, embedding):
19
+ self.stages.append({
20
+ "stage": "encoding",
21
+ "query": query,
22
+ "embedding_preview": embedding[:10], # First 10 dims
23
+ "timestamp": time.time()
24
+ })
25
+
26
+ def track_retrieval(self, documents, scores):
27
+ self.stages.append({
28
+ "stage": "retrieval",
29
+ "num_docs": len(documents),
30
+ "top_scores": scores[:5],
31
+ "documents": [{"text": d[:100], "score": s}
32
+ for d, s in zip(documents[:5], scores[:5])]
33
+ })
34
+
35
+ def track_generation(self, context, response):
36
+ self.stages.append({
37
+ "stage": "generation",
38
+ "context_length": len(context),
39
+ "response_length": len(response),
40
+ "attribution": self.extract_citations(response)
41
+ })
42
+ ```
43
+
44
+ 2. **Frontend: RAG Pipeline Viewer** (add to `index.html`)
45
+ ```html
46
+ <div class="rag-pipeline" id="rag-pipeline">
47
+ <div class="stage" data-stage="encoding">
48
+ <div class="stage-icon">πŸ”</div>
49
+ <div class="stage-title">Query Encoding</div>
50
+ <div class="stage-details">
51
+ <div class="embedding-preview"></div>
52
+ </div>
53
+ </div>
54
+
55
+ <div class="stage" data-stage="retrieval">
56
+ <div class="stage-icon">πŸ“š</div>
57
+ <div class="stage-title">Document Retrieval</div>
58
+ <div class="retrieved-docs"></div>
59
+ </div>
60
+
61
+ <div class="stage" data-stage="generation">
62
+ <div class="stage-icon">✍️</div>
63
+ <div class="stage-title">Generation</div>
64
+ <div class="citations"></div>
65
+ </div>
66
+ </div>
67
+ ```
68
+
69
+ 3. **Styling: Research Lab Theme**
70
+ ```css
71
+ .rag-pipeline {
72
+ background: #1e1e1e;
73
+ color: #d4d4d4;
74
+ font-family: 'Fira Code', monospace;
75
+ padding: 20px;
76
+ border-radius: 8px;
77
+ margin: 20px 0;
78
+ }
79
+
80
+ .stage {
81
+ border-left: 3px solid #007acc;
82
+ padding: 15px;
83
+ margin: 10px 0;
84
+ transition: all 0.3s;
85
+ }
86
+
87
+ .stage.active {
88
+ border-left-color: #4ec9b0;
89
+ background: #2d2d2d;
90
+ }
91
+
92
+ .embedding-preview {
93
+ font-family: 'Courier New', monospace;
94
+ background: #0e0e0e;
95
+ padding: 10px;
96
+ border-radius: 4px;
97
+ overflow-x: auto;
98
+ }
99
+ ```
100
+
101
+ ---
102
+
103
+ ### Priority 2: Attention Visualization ⭐⭐
104
+ **Why:** Shows interpretability, looks impressive, educational
105
+ **Effort:** Medium-High
106
+ **Impact:** Very High (visually stunning)
107
+
108
+ #### Implementation:
109
+
110
+ 1. **Mock attention data in demo mode**
111
+ ```python
112
+ def generate_attention_heatmap(query: str, response: str):
113
+ """Generate synthetic attention weights for demo."""
114
+ query_tokens = query.split()
115
+ response_tokens = response.split()[:20] # First 20 tokens
116
+
117
+ # Simulate attention: query tokens attend to relevant response tokens
118
+ attention = np.random.rand(len(query_tokens), len(response_tokens))
119
+
120
+ # Add some structure (diagonal-ish for realistic look)
121
+ for i in range(len(query_tokens)):
122
+ attention[i, i:i+3] *= 2 # Boost nearby tokens
123
+
124
+ attention = softmax(attention, axis=1)
125
+
126
+ return {
127
+ "query_tokens": query_tokens,
128
+ "response_tokens": response_tokens,
129
+ "attention_weights": attention.tolist()
130
+ }
131
+ ```
132
+
133
+ 2. **Interactive heatmap with Plotly or D3.js**
134
+ ```javascript
135
+ function renderAttentionHeatmap(data) {
136
+ const trace = {
137
+ x: data.response_tokens,
138
+ y: data.query_tokens,
139
+ z: data.attention_weights,
140
+ type: 'heatmap',
141
+ colorscale: 'Viridis',
142
+ hoverongaps: false
143
+ };
144
+
145
+ const layout = {
146
+ title: 'Attention Pattern: Query β†’ Response',
147
+ xaxis: { title: 'Response Tokens' },
148
+ yaxis: { title: 'Query Tokens' },
149
+ paper_bgcolor: '#1e1e1e',
150
+ plot_bgcolor: '#1e1e1e',
151
+ font: { color: '#d4d4d4' }
152
+ };
153
+
154
+ Plotly.newPlot('attention-heatmap', [trace], layout);
155
+ }
156
+ ```
157
+
158
+ ---
159
+
160
+ ### Priority 3: Paper Citation System ⭐⭐⭐
161
+ **Why:** Academic credibility, research positioning
162
+ **Effort:** Low
163
+ **Impact:** High (perception)
164
+
165
+ #### Implementation:
166
+
167
+ 1. **Paper database** (`api/papers.py`)
168
+ ```python
169
+ RESEARCH_PAPERS = {
170
+ "attention": {
171
+ "title": "Attention is All You Need",
172
+ "authors": "Vaswani et al.",
173
+ "year": 2017,
174
+ "venue": "NeurIPS",
175
+ "url": "https://arxiv.org/abs/1706.03762",
176
+ "citations": 87000,
177
+ "summary": "Introduced the Transformer architecture using self-attention."
178
+ },
179
+ "rag": {
180
+ "title": "Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks",
181
+ "authors": "Lewis et al.",
182
+ "year": 2020,
183
+ "venue": "NeurIPS",
184
+ "url": "https://arxiv.org/abs/2005.11401",
185
+ "citations": 3200,
186
+ "summary": "Combines retrieval with generation for factual QA."
187
+ },
188
+ "tot": {
189
+ "title": "Tree of Thoughts: Deliberate Problem Solving with LLMs",
190
+ "authors": "Yao et al.",
191
+ "year": 2023,
192
+ "venue": "NeurIPS",
193
+ "url": "https://arxiv.org/abs/2305.10601",
194
+ "citations": 450,
195
+ "summary": "Explores multiple reasoning paths like human problem-solving."
196
+ },
197
+ # Add 15+ more papers...
198
+ }
199
+
200
+ def get_relevant_papers(feature: str) -> List[Dict]:
201
+ """Return papers relevant to the current feature."""
202
+ feature_paper_map = {
203
+ "rag": ["rag", "dense_retrieval"],
204
+ "attention": ["attention", "transformers"],
205
+ "reasoning": ["tot", "cot", "self_consistency"],
206
+ # ...
207
+ }
208
+ return [RESEARCH_PAPERS[p] for p in feature_paper_map.get(feature, [])]
209
+ ```
210
+
211
+ 2. **Citation widget**
212
+ ```html
213
+ <div class="paper-citations">
214
+ <div class="citation-header">
215
+ πŸ“š Research Foundations
216
+ </div>
217
+ <div class="citation-list">
218
+ <div class="citation-item">
219
+ <div class="citation-title">
220
+ "Attention is All You Need"
221
+ </div>
222
+ <div class="citation-meta">
223
+ Vaswani et al., NeurIPS 2017 | 87k citations
224
+ </div>
225
+ <div class="citation-actions">
226
+ <a href="#" class="btn-citation">PDF</a>
227
+ <a href="#" class="btn-citation">Code</a>
228
+ <a href="#" class="btn-citation">Cite</a>
229
+ </div>
230
+ </div>
231
+ </div>
232
+ </div>
233
+ ```
234
+
235
+ ---
236
+
237
+ ### Priority 4: Uncertainty Quantification ⭐⭐
238
+ **Why:** Shows sophistication, useful for users
239
+ **Effort:** Low-Medium
240
+ **Impact:** Medium-High
241
+
242
+ #### Implementation:
243
+
244
+ 1. **Confidence estimation** (demo mode)
245
+ ```python
246
+ def estimate_confidence(query: str, response: str, mode: str) -> Dict:
247
+ """
248
+ Estimate confidence based on heuristics.
249
+ In production, use actual model logits.
250
+ """
251
+ # Heuristics for demo
252
+ confidence_base = 0.7
253
+
254
+ # Boost confidence for technical mode (seems more certain)
255
+ if mode == "technical":
256
+ confidence_base += 0.1
257
+
258
+ # Lower confidence for vague queries
259
+ if len(query.split()) < 5:
260
+ confidence_base -= 0.15
261
+
262
+ # Add some noise for realism
263
+ confidence = confidence_base + np.random.uniform(-0.1, 0.1)
264
+ confidence = np.clip(confidence, 0.3, 0.95)
265
+
266
+ # Estimate epistemic vs aleatoric
267
+ epistemic = confidence * 0.6 # Model uncertainty
268
+ aleatoric = confidence * 0.4 # Data ambiguity
269
+
270
+ return {
271
+ "overall": round(confidence, 2),
272
+ "epistemic": round(epistemic, 2),
273
+ "aleatoric": round(aleatoric, 2),
274
+ "calibration_error": round(abs(confidence - 0.8), 3),
275
+ "interpretation": interpret_confidence(confidence)
276
+ }
277
+
278
+ def interpret_confidence(conf: float) -> str:
279
+ if conf > 0.85:
280
+ return "High confidence - well-established knowledge"
281
+ elif conf > 0.65:
282
+ return "Moderate confidence - generally accurate"
283
+ else:
284
+ return "Low confidence - consider verifying independently"
285
+ ```
286
+
287
+ 2. **Confidence gauge widget**
288
+ ```html
289
+ <div class="confidence-gauge">
290
+ <div class="gauge-header">Confidence Analysis</div>
291
+
292
+ <div class="gauge-visual">
293
+ <svg viewBox="0 0 200 100">
294
+ <!-- Arc background -->
295
+ <path d="M 20,80 A 60,60 0 0,1 180,80"
296
+ stroke="#333" stroke-width="20" fill="none"/>
297
+
298
+ <!-- Confidence arc (dynamic) -->
299
+ <path id="confidence-arc"
300
+ d="M 20,80 A 60,60 0 0,1 180,80"
301
+ stroke="url(#confidence-gradient)"
302
+ stroke-width="20"
303
+ fill="none"
304
+ stroke-dasharray="251.2"
305
+ stroke-dashoffset="125.6"/>
306
+
307
+ <defs>
308
+ <linearGradient id="confidence-gradient">
309
+ <stop offset="0%" stop-color="#f56565"/>
310
+ <stop offset="50%" stop-color="#f6ad55"/>
311
+ <stop offset="100%" stop-color="#48bb78"/>
312
+ </linearGradient>
313
+ </defs>
314
+ </svg>
315
+
316
+ <div class="gauge-value">76%</div>
317
+ </div>
318
+
319
+ <div class="uncertainty-breakdown">
320
+ <div class="uncertainty-item">
321
+ <span class="label">Epistemic (Model)</span>
322
+ <div class="bar" style="width: 60%"></div>
323
+ </div>
324
+ <div class="uncertainty-item">
325
+ <span class="label">Aleatoric (Data)</span>
326
+ <div class="bar" style="width: 85%"></div>
327
+ </div>
328
+ </div>
329
+ </div>
330
+ ```
331
+
332
+ ---
333
+
334
+ ## Integration Plan
335
+
336
+ ### Step 1: Update `api/ask.py`
337
+ Add these fields to response:
338
+ ```python
339
+ {
340
+ "result": "...",
341
+ "research_data": {
342
+ "rag_pipeline": {...}, # RAG stages
343
+ "attention": {...}, # Attention weights
344
+ "confidence": {...}, # Uncertainty metrics
345
+ "papers": [...] # Relevant citations
346
+ }
347
+ }
348
+ ```
349
+
350
+ ### Step 2: Update `public/index.html`
351
+ Add new sections:
352
+ ```html
353
+ <div class="research-panel" style="display:none" id="research-panel">
354
+ <div class="panel-tabs">
355
+ <button class="tab active" data-tab="rag">RAG Pipeline</button>
356
+ <button class="tab" data-tab="attention">Attention</button>
357
+ <button class="tab" data-tab="confidence">Confidence</button>
358
+ <button class="tab" data-tab="papers">Papers</button>
359
+ </div>
360
+
361
+ <div class="panel-content">
362
+ <div id="rag-tab" class="tab-pane active"></div>
363
+ <div id="attention-tab" class="tab-pane"></div>
364
+ <div id="confidence-tab" class="tab-pane"></div>
365
+ <div id="papers-tab" class="tab-pane"></div>
366
+ </div>
367
+ </div>
368
+
369
+ <button id="toggle-research" class="btn-toggle">
370
+ πŸ”¬ Show Research Details
371
+ </button>
372
+ ```
373
+
374
+ ### Step 3: Add Dependencies
375
+ ```bash
376
+ # For visualization
377
+ npm install plotly.js d3
378
+
379
+ # Or use CDN in HTML
380
+ <script src="https://cdn.plot.ly/plotly-2.27.0.min.js"></script>
381
+ ```
382
+
383
+ ---
384
+
385
+ ## Timeline
386
+
387
+ **Day 1:**
388
+ - βœ… Set up paper database
389
+ - βœ… Add citation widget
390
+ - βœ… Basic confidence estimation
391
+ - βœ… Update response structure
392
+
393
+ **Day 2:**
394
+ - βœ… Implement RAG tracker (mock data)
395
+ - βœ… Build RAG pipeline UI
396
+ - βœ… Style research panel
397
+ - βœ… Add confidence gauge
398
+
399
+ **Day 3:**
400
+ - βœ… Generate attention heatmaps
401
+ - βœ… Integrate Plotly visualization
402
+ - βœ… Polish animations
403
+ - βœ… Test & deploy
404
+
405
+ ---
406
+
407
+ ## Success Criteria
408
+
409
+ βœ“ Users can toggle "Research Mode"
410
+ βœ“ 4 interactive visualizations working
411
+ βœ“ 10+ papers cited with links
412
+ βœ“ Confidence scores shown per response
413
+ βœ“ Dark theme, monospace aesthetic
414
+ βœ“ Export visualizations as images
415
+ βœ“ Mobile responsive
416
+
417
+ ---
418
+
419
+ ## Next Phase Preview
420
+
421
+ Once Phase 1 is solid, Phase 2 adds:
422
+ - 🌳 Tree-of-Thoughts interactive explorer
423
+ - πŸ•ΈοΈ Knowledge graph visualization
424
+ - 🧠 Cognitive load real-time monitor
425
+ - πŸ“Š A/B testing dashboard
426
+
427
+ **Ready to start implementing?** Let's begin with the paper citation system (easiest) or RAG pipeline (most visual impact)?
RESEARCH_ROADMAP.md ADDED
@@ -0,0 +1,646 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # πŸ”¬ Eidolon Cognitive Tutor - Research Lab Roadmap
2
+
3
+ ## Vision: Showcase Cutting-Edge AI/ML Research in Education
4
+
5
+ Transform the tutor into a **living research demonstration** that visualizes state-of-the-art AI concepts, inspired by recent breakthrough papers (2020-2024).
6
+
7
+ ---
8
+
9
+ ## 🎯 Core Research Themes
10
+
11
+ ### 1. **Explainable AI & Interpretability**
12
+ *Show users HOW the AI thinks, not just WHAT it outputs*
13
+
14
+ #### 🧠 Cognitive Architecture Visualization
15
+ **Papers:**
16
+ - "Attention is All You Need" (Vaswani et al., 2017)
17
+ - "A Mathematical Framework for Transformer Circuits" (Elhage et al., 2021)
18
+ - "Interpretability in the Wild" (Anthropic, 2023)
19
+
20
+ **Implementation:**
21
+ ```
22
+ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
23
+ β”‚ 🧠 COGNITIVE PROCESS VIEWER β”‚
24
+ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
25
+ β”‚ Query: "Explain quantum entanglement" β”‚
26
+ β”‚ β”‚
27
+ β”‚ [1] Token Attention Heatmap β”‚
28
+ β”‚ β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‘β–‘β–‘β–‘ "quantum" β†’ physics β”‚
29
+ β”‚ β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‘β–‘ "entangle" β†’ connect β”‚
30
+ β”‚ β”‚
31
+ β”‚ [2] Knowledge Retrieval β”‚
32
+ β”‚ ↳ Quantum Mechanics (0.94) β”‚
33
+ β”‚ ↳ Bell's Theorem (0.87) β”‚
34
+ β”‚ ↳ EPR Paradox (0.81) β”‚
35
+ β”‚ β”‚
36
+ β”‚ [3] Reasoning Chain β”‚
37
+ β”‚ Think: Need simple analogy β”‚
38
+ β”‚ β†’ Retrieve: coin flip metaphor β”‚
39
+ β”‚ β†’ Synthesize: connected particles β”‚
40
+ β”‚ β†’ Verify: scientifically accurate β”‚
41
+ β”‚ β”‚
42
+ β”‚ [4] Confidence: 89% Β±3% β”‚
43
+ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
44
+ ```
45
+
46
+ **Features:**
47
+ - Real-time attention weight visualization
48
+ - Interactive layer-by-layer activation inspection
49
+ - Concept activation mapping
50
+ - Neuron-level feature visualization
51
+
52
+ ---
53
+
54
+ ### 2. **Meta-Learning & Few-Shot Adaptation**
55
+ *Demonstrate how AI learns to learn*
56
+
57
+ #### πŸŽ“ Adaptive Learning System
58
+ **Papers:**
59
+ - "Model-Agnostic Meta-Learning (MAML)" (Finn et al., 2017)
60
+ - "Learning to Learn by Gradient Descent" (Andrychowicz et al., 2016)
61
+ - "Meta-Learning with Implicit Gradients" (Rajeswaran et al., 2019)
62
+
63
+ **Implementation:**
64
+ ```python
65
+ class MetaLearningTutor:
66
+ """
67
+ Adapts teaching strategy based on learner's responses.
68
+ Uses inner loop (student adaptation) and outer loop (strategy refinement).
69
+ """
70
+
71
+ def adapt(self, student_responses: List[Response]) -> TeachingPolicy:
72
+ # Extract learning patterns
73
+ mastery_curve = self.estimate_mastery(student_responses)
74
+ confusion_points = self.identify_gaps(student_responses)
75
+
76
+ # Few-shot adaptation: learn from 3-5 interactions
77
+ adapted_policy = self.maml_adapt(
78
+ base_policy=self.teaching_policy,
79
+ support_set=student_responses[-5:], # Last 5 interactions
80
+ adaptation_steps=3
81
+ )
82
+
83
+ return adapted_policy
84
+ ```
85
+
86
+ **Visualization:**
87
+ - Learning curve evolution
88
+ - Gradient flow diagrams
89
+ - Task similarity clustering
90
+ - Adaptation trajectory in embedding space
91
+
92
+ ---
93
+
94
+ ### 3. **Knowledge Graphs & Multi-Hop Reasoning**
95
+ *Show structured knowledge retrieval and reasoning*
96
+
97
+ #### πŸ•ΈοΈ Interactive Knowledge Graph
98
+ **Papers:**
99
+ - "Graph Neural Networks: A Review" (Zhou et al., 2020)
100
+ - "Knowledge Graphs" (Hogan et al., 2021)
101
+ - "REALM: Retrieval-Augmented Language Model Pre-Training" (Guu et al., 2020)
102
+
103
+ **Implementation:**
104
+ ```
105
+ Query: "How does photosynthesis relate to climate change?"
106
+
107
+ Knowledge Graph Traversal:
108
+ [Photosynthesis] ──produces──→ [Oxygen]
109
+ ↓ ↓
110
+ absorbs CO2 breathed by animals
111
+ ↓ ↓
112
+ [Carbon Cycle] ←──affects── [Climate Change]
113
+ ↓
114
+ regulated by
115
+ ↓
116
+ [Deforestation] ──causes──→ [Global Warming]
117
+
118
+ Multi-Hop Reasoning Path (3 hops):
119
+ 1. Photosynthesis absorbs CO2 (confidence: 0.99)
120
+ 2. CO2 is a greenhouse gas (confidence: 0.98)
121
+ 3. Therefore photosynthesis mitigates climate change (confidence: 0.92)
122
+ ```
123
+
124
+ **Features:**
125
+ - Interactive graph exploration (zoom, filter, highlight)
126
+ - GNN reasoning path visualization
127
+ - Confidence propagation through graph
128
+ - Counterfactual reasoning ("What if we remove this node?")
129
+
130
+ ---
131
+
132
+ ### 4. **Retrieval-Augmented Generation (RAG)**
133
+ *Transparent source attribution and knowledge grounding*
134
+
135
+ #### πŸ“š RAG Pipeline Visualization
136
+ **Papers:**
137
+ - "Retrieval-Augmented Generation for Knowledge-Intensive NLP" (Lewis et al., 2020)
138
+ - "Dense Passage Retrieval" (Karpukhin et al., 2020)
139
+ - "REPLUG: Retrieval-Augmented Black-Box Language Models" (Shi et al., 2023)
140
+
141
+ **Implementation:**
142
+ ```
143
+ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
144
+ β”‚ RAG PIPELINE INSPECTOR β”‚
145
+ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
146
+ β”‚ [1] Query Encoding β”‚
147
+ β”‚ "Explain transformer architecture" β”‚
148
+ β”‚ β†’ Embedding: [0.23, -0.45, ...] β”‚
149
+ β”‚ β”‚
150
+ β”‚ [2] Semantic Search β”‚
151
+ β”‚ πŸ” Searching 10M+ passages... β”‚
152
+ β”‚ βœ“ Top 5 retrieved in 12ms β”‚
153
+ β”‚ β”‚
154
+ β”‚ [3] Retrieved Context β”‚
155
+ β”‚ πŸ“„ "Attention is All You Need" β”‚
156
+ β”‚ Relevance: 0.94 | Cited: 87k β”‚
157
+ β”‚ πŸ“„ "BERT: Pre-training..." β”‚
158
+ β”‚ Relevance: 0.89 | Cited: 52k β”‚
159
+ β”‚ [show more...] β”‚
160
+ β”‚ β”‚
161
+ β”‚ [4] Re-ranking (Cross-Encoder) β”‚
162
+ β”‚ Passage 1: 0.94 β†’ 0.97 ⬆ β”‚
163
+ β”‚ Passage 2: 0.89 β†’ 0.85 ⬇ β”‚
164
+ β”‚ β”‚
165
+ β”‚ [5] Generation with Attribution β”‚
166
+ β”‚ "Transformers use self-attention β”‚
167
+ β”‚ [1] to process sequences..." β”‚
168
+ β”‚ β”‚
169
+ β”‚ [1] Vaswani et al. 2017, p.3 β”‚
170
+ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
171
+ ```
172
+
173
+ **Features:**
174
+ - Embedding space visualization (t-SNE/UMAP)
175
+ - Semantic similarity scores
176
+ - Source credibility indicators
177
+ - Hallucination detection
178
+
179
+ ---
180
+
181
+ ### 5. **Uncertainty Quantification & Calibration**
182
+ *Show when the AI is confident vs. uncertain*
183
+
184
+ #### πŸ“Š Confidence Calibration System
185
+ **Papers:**
186
+ - "On Calibration of Modern Neural Networks" (Guo et al., 2017)
187
+ - "Uncertainty in Deep Learning" (Gal, 2016)
188
+ - "Conformal Prediction Under Covariate Shift" (Tibshirani et al., 2019)
189
+
190
+ **Implementation:**
191
+ ```python
192
+ class UncertaintyQuantifier:
193
+ """
194
+ Estimates epistemic (model) and aleatoric (data) uncertainty.
195
+ """
196
+
197
+ def compute_uncertainty(self, response: str) -> Dict:
198
+ return {
199
+ "epistemic": self.model_uncertainty(), # What model doesn't know
200
+ "aleatoric": self.data_uncertainty(), # Inherent ambiguity
201
+ "calibration_score": self.calibration(), # How well-calibrated
202
+ "conformal_set": self.conformal_predict() # Prediction interval
203
+ }
204
+ ```
205
+
206
+ **Visualization:**
207
+ ```
208
+ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
209
+ β”‚ UNCERTAINTY DASHBOARD β”‚
210
+ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
211
+ β”‚ Overall Confidence: 76% Β±8% β”‚
212
+ β”‚ β”‚
213
+ β”‚ Epistemic (Model) β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‘β–‘β–‘β–‘ 60% β”‚
214
+ β”‚ β†’ Model hasn't seen enough examples β”‚
215
+ β”‚ β”‚
216
+ β”‚ Aleatoric (Data) β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‘ 85% β”‚
217
+ β”‚ β†’ Question has inherent ambiguity β”‚
218
+ β”‚ β”‚
219
+ β”‚ Calibration Plot: β”‚
220
+ β”‚ 1.0 ─ β•± β”‚
221
+ β”‚ β”‚ β•± β”‚
222
+ β”‚ β”‚ β•± (perfectly calibrated) β”‚
223
+ β”‚ 0.0 └────────────── β”‚
224
+ β”‚ β”‚
225
+ β”‚ ⚠️ Low confidence detected! β”‚
226
+ β”‚ πŸ’‘ Suggestion: "Could you clarify...?" β”‚
227
+ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
228
+ ```
229
+
230
+ ---
231
+
232
+ ### 6. **Constitutional AI & Safety**
233
+ *Demonstrate alignment and safety mechanisms*
234
+
235
+ #### πŸ›‘οΈ Safety-First Design
236
+ **Papers:**
237
+ - "Constitutional AI: Harmlessness from AI Feedback" (Bai et al., 2022)
238
+ - "Training language models to follow instructions with human feedback" (Ouyang et al., 2022)
239
+ - "Red Teaming Language Models" (Perez et al., 2022)
240
+
241
+ **Implementation:**
242
+ ```
243
+ User Query: "How do I hack into..."
244
+
245
+ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
246
+ β”‚ πŸ›‘οΈ SAFETY SYSTEM ACTIVATED β”‚
247
+ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
248
+ β”‚ [1] Harmfulness Detection β”‚
249
+ β”‚ ⚠️ Potential harm score: 0.87 β”‚
250
+ β”‚ Category: Unauthorized access β”‚
251
+ β”‚ β”‚
252
+ β”‚ [2] Constitutional Principles β”‚
253
+ β”‚ βœ“ Principle 1: Do no harm β”‚
254
+ β”‚ βœ“ Principle 2: Respect privacy β”‚
255
+ β”‚ βœ“ Principle 3: Follow laws β”‚
256
+ β”‚ β”‚
257
+ β”‚ [3] Response Correction β”‚
258
+ β”‚ Original: [redacted harmful path] β”‚
259
+ β”‚ Revised: "I can't help with that, β”‚
260
+ β”‚ but I can explain..." β”‚
261
+ β”‚ β”‚
262
+ β”‚ [4] Educational Redirect β”‚
263
+ β”‚ Suggested: "Cybersecurity ethics" β”‚
264
+ β”‚ "Penetration testing" β”‚
265
+ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
266
+ ```
267
+
268
+ **Features:**
269
+ - Real-time safety scoring
270
+ - Principle-based reasoning chains
271
+ - Adversarial robustness testing
272
+ - Red team attack visualization
273
+
274
+ ---
275
+
276
+ ### 7. **Tree-of-Thoughts Reasoning**
277
+ *Show deliberate problem-solving strategies*
278
+
279
+ #### 🌳 Reasoning Tree Visualization
280
+ **Papers:**
281
+ - "Tree of Thoughts: Deliberate Problem Solving" (Yao et al., 2023)
282
+ - "Chain-of-Thought Prompting" (Wei et al., 2022)
283
+ - "Self-Consistency Improves Chain of Thought" (Wang et al., 2022)
284
+
285
+ **Implementation:**
286
+ ```
287
+ Problem: "How would you explain relativity to a 10-year-old?"
288
+
289
+ Tree of Thoughts:
290
+ [Root: Strategy Selection]
291
+ / | \
292
+ / | \
293
+ [Analogy] [Story] [Demo]
294
+ / | \
295
+ [Train] [Ball] [Twin] [Experiment]
296
+ / | | | |
297
+ [Fast] [Slow] [Time] [Space] [Show]
298
+ ↓ ↓ ↓ ↓ ↓
299
+ Eval:0.8 0.9 0.7 0.6 0.5
300
+
301
+ Selected Path (highest score):
302
+ Strategy: Analogy β†’ Concept: Train β†’ Example: Slow train
303
+
304
+ Self-Consistency Check:
305
+ βœ“ Sampled 5 reasoning paths
306
+ βœ“ 4/5 agree on train analogy
307
+ βœ“ Confidence: 94%
308
+ ```
309
+
310
+ **Features:**
311
+ - Interactive tree navigation
312
+ - Branch pruning visualization
313
+ - Self-evaluation scores at each node
314
+ - Comparative reasoning paths
315
+
316
+ ---
317
+
318
+ ### 8. **Cognitive Load Theory**
319
+ *Optimize learning based on cognitive science*
320
+
321
+ #### 🧠 Cognitive Load Estimation
322
+ **Papers:**
323
+ - "Cognitive Load Theory" (Sweller, 1988)
324
+ - "Zone of Proximal Development" (Vygotsky)
325
+ - "Measuring Cognitive Load Using Dual-Task Methodology" (BrΓΌnken et al., 2003)
326
+
327
+ **Implementation:**
328
+ ```python
329
+ class CognitiveLoadEstimator:
330
+ """
331
+ Estimates intrinsic, extraneous, and germane cognitive load.
332
+ """
333
+
334
+ def estimate_load(self, response_metrics: Dict) -> CognitiveLoad:
335
+ return CognitiveLoad(
336
+ intrinsic=self.concept_complexity(), # Topic difficulty
337
+ extraneous=self.presentation_load(), # UI/format overhead
338
+ germane=self.schema_construction(), # Productive learning
339
+
340
+ # Zone of Proximal Development
341
+ zpd_score=self.zpd_alignment(), # Too easy/hard/just right
342
+ optimal_challenge=self.compute_optimal_difficulty()
343
+ )
344
+ ```
345
+
346
+ **Visualization:**
347
+ ```
348
+ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
349
+ β”‚ COGNITIVE LOAD MONITOR β”‚
350
+ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
351
+ β”‚ Current Load: 67% (Optimal: 60-80%) β”‚
352
+ β”‚ β”‚
353
+ β”‚ Intrinsic β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‘β–‘β–‘β–‘ 65% β”‚
354
+ β”‚ (concept complexity) β”‚
355
+ β”‚ β”‚
356
+ β”‚ Extraneous β–ˆβ–ˆβ–ˆβ–‘β–‘β–‘β–‘β–‘β–‘β–‘β–‘ 25% β”‚
357
+ β”‚ (presentation overhead) β”‚
358
+ β”‚ β”‚
359
+ β”‚ Germane β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ 95% β”‚
360
+ β”‚ (productive learning) β”‚
361
+ β”‚ β”‚
362
+ β”‚ πŸ“ Zone of Proximal Development β”‚
363
+ β”‚ Too Easy ←─[You]─────→ Too Hard β”‚
364
+ β”‚ β”‚
365
+ β”‚ πŸ’‘ Recommendation: Increase difficulty β”‚
366
+ β”‚ from Level 3 β†’ Level 4 β”‚
367
+ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
368
+ ```
369
+
370
+ ---
371
+
372
+ ### 9. **Multimodal Learning**
373
+ *Integrate vision, language, code, and more*
374
+
375
+ #### 🎨 Cross-Modal Reasoning
376
+ **Papers:**
377
+ - "CLIP: Learning Transferable Visual Models" (Radford et al., 2021)
378
+ - "Flamingo: Visual Language Models" (Alayrac et al., 2022)
379
+ - "GPT-4 Technical Report" (OpenAI, 2023) - multimodal capabilities
380
+
381
+ **Implementation:**
382
+ ```
383
+ Query: "Explain binary search with a diagram"
384
+
385
+ Response:
386
+ [Text] "Binary search repeatedly divides..."
387
+ ↓
388
+ [Code] def binary_search(arr, target): ...
389
+ ↓
390
+ [Diagram]
391
+ [1,3,5,7,9,11,13,15]
392
+ ↓
393
+ [9,11,13,15]
394
+ ↓
395
+ [9,11]
396
+ ↓
397
+ [Animation] Step-by-step execution
398
+ ↓
399
+ [Interactive] Try your own example!
400
+
401
+ Cross-Modal Attention:
402
+ Text ←──0.87──→ Code
403
+ Code ←──0.92──→ Diagram
404
+ Diagram ←─0.78─→ Animation
405
+ ```
406
+
407
+ **Features:**
408
+ - LaTeX equation rendering
409
+ - Mermaid diagram generation
410
+ - Code execution sandbox
411
+ - Interactive visualizations
412
+
413
+ ---
414
+
415
+ ### 10. **Direct Preference Optimization (DPO)**
416
+ *Show alignment without reward models*
417
+
418
+ #### 🎯 Preference Learning Visualization
419
+ **Papers:**
420
+ - "Direct Preference Optimization" (Rafailov et al., 2023)
421
+ - "RLHF: Training language models to follow instructions" (Ouyang et al., 2022)
422
+
423
+ **Implementation:**
424
+ ```
425
+ User Feedback: πŸ‘ or πŸ‘Ž on responses
426
+
427
+ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
428
+ β”‚ PREFERENCE LEARNING DASHBOARD β”‚
429
+ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
430
+ β”‚ Response A: "Quantum mechanics is..." β”‚
431
+ β”‚ Response B: "Let me explain quantum.." β”‚
432
+ β”‚ β”‚
433
+ β”‚ User Preferred: B (more engaging) β”‚
434
+ β”‚ β”‚
435
+ β”‚ Policy Update: β”‚
436
+ β”‚ Engagement ↑ +15% β”‚
437
+ β”‚ Technical detail ↓ -5% β”‚
438
+ β”‚ Simplicity ↑ +20% β”‚
439
+ β”‚ β”‚
440
+ β”‚ Implicit Reward Model: β”‚
441
+ β”‚ r(B) - r(A) = +2.3 β”‚
442
+ β”‚ β”‚
443
+ β”‚ Learning Progress: β”‚
444
+ β”‚ Epoch 0 β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‘β–‘ 85% β”‚
445
+ β”‚ Converged after 142 preferences β”‚
446
+ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
447
+ ```
448
+
449
+ ---
450
+
451
+ ## πŸ—οΈ Architecture Overview
452
+
453
+ ```
454
+ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
455
+ β”‚ USER INTERFACE β”‚
456
+ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚
457
+ β”‚ β”‚ Chat UI β”‚ β”‚ Viz Panelβ”‚ β”‚ Controls β”‚ β”‚
458
+ β”‚ β””β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”˜ β”‚
459
+ β””β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
460
+ β”‚ β”‚ β”‚
461
+ β”Œβ”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
462
+ β”‚ COGNITIVE ORCHESTRATOR β”‚
463
+ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚
464
+ β”‚ β”‚ β€’ Query Understanding β”‚ β”‚
465
+ β”‚ β”‚ β€’ Reasoning Strategy Selection β”‚ β”‚
466
+ β”‚ β”‚ β€’ Multi-System Coordination β”‚ β”‚
467
+ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚
468
+ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
469
+ β”‚ β”‚ β”‚
470
+ β”Œβ”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β” β”Œβ”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”
471
+ β”‚ RAG β”‚ β”‚Knowledge β”‚ β”‚Uncertaintyβ”‚
472
+ β”‚ Pipeline β”‚ β”‚ Graph β”‚ β”‚Quantifier β”‚
473
+ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
474
+ β”‚ β”‚ β”‚
475
+ β”Œβ”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”
476
+ β”‚ LLM with Instrumentation β”‚
477
+ β”‚ β€’ Attention tracking β”‚
478
+ β”‚ β€’ Activation logging β”‚
479
+ β”‚ β€’ Token probability capture β”‚
480
+ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
481
+ ```
482
+
483
+ ---
484
+
485
+ ## 🎨 UI/UX Design Principles
486
+
487
+ ### Research Lab Aesthetic
488
+ - **Dark theme** with syntax highlighting (like Jupyter/VSCode)
489
+ - **Monospace fonts** for code and data
490
+ - **Live metrics** updating in real-time
491
+ - **Interactive plots** (Plotly/D3.js)
492
+ - **Collapsible panels** for technical details
493
+ - **Export options** (save visualizations, data, configs)
494
+
495
+ ### Information Hierarchy
496
+ ```
497
+ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
498
+ β”‚ [Main Response] ← Primary focus β”‚
499
+ β”‚ Clear, readable, large β”‚
500
+ β”‚ β”‚
501
+ β”‚ [Reasoning Visualization] β”‚
502
+ β”‚ ↳ Expandable details β”‚
503
+ β”‚ ↳ Interactive elements β”‚
504
+ β”‚ β”‚
505
+ β”‚ [Technical Metrics] β”‚
506
+ β”‚ ↳ Confidence, uncertainty β”‚
507
+ β”‚ ↳ Performance stats β”‚
508
+ β”‚ β”‚
509
+ β”‚ [Research Context] β”‚
510
+ β”‚ ↳ Paper references β”‚
511
+ β”‚ ↳ Related concepts β”‚
512
+ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
513
+ ```
514
+
515
+ ---
516
+
517
+ ## πŸ“Š Data & Metrics to Track
518
+
519
+ ### Learning Analytics
520
+ - **Mastery progression** per concept
521
+ - **Difficulty calibration** accuracy
522
+ - **Engagement metrics** (time, interactions)
523
+ - **Confusion signals** (repeated questions, clarifications)
524
+
525
+ ### AI Performance Metrics
526
+ - **Inference latency** (p50, p95, p99)
527
+ - **Token usage** per query
528
+ - **Cache hit rates**
529
+ - **Retrieval precision/recall**
530
+ - **Calibration error** (Expected Calibration Error)
531
+ - **Hallucination rate**
532
+
533
+ ### A/B Testing Framework
534
+ - **Reasoning strategies** (ToT vs CoT vs ReAct)
535
+ - **Explanation styles** (technical vs analogical)
536
+ - **Interaction patterns** (Socratic vs direct)
537
+
538
+ ---
539
+
540
+ ## πŸ”¬ Experimental Features
541
+
542
+ ### 1. **Research Playground**
543
+ - **Compare models** side-by-side (GPT-4 vs Claude vs Llama)
544
+ - **Ablation studies** (remove RAG, change prompts)
545
+ - **Hyperparameter tuning** interface
546
+
547
+ ### 2. **Dataset Explorer**
548
+ - Browse training data examples
549
+ - Show nearest neighbors in embedding space
550
+ - Visualize data distribution
551
+
552
+ ### 3. **Live Fine-Tuning**
553
+ - User corrections improve model in real-time
554
+ - Show gradient updates
555
+ - Track loss curves
556
+
557
+ ---
558
+
559
+ ## πŸ“š Paper References Dashboard
560
+
561
+ Every feature should link to relevant papers:
562
+
563
+ ```
564
+ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
565
+ β”‚ πŸ“„ RESEARCH FOUNDATIONS β”‚
566
+ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
567
+ β”‚ This feature implements concepts from: β”‚
568
+ β”‚ β”‚
569
+ β”‚ [1] "Tree of Thoughts: Deliberate β”‚
570
+ β”‚ Problem Solving with Large β”‚
571
+ β”‚ Language Models" β”‚
572
+ β”‚ Yao et al., 2023 β”‚
573
+ β”‚ [PDF] [Code] [Cite] β”‚
574
+ β”‚ β”‚
575
+ β”‚ [2] "Self-Consistency Improves Chain β”‚
576
+ β”‚ of Thought Reasoning" β”‚
577
+ β”‚ Wang et al., 2022 β”‚
578
+ β”‚ [PDF] [Code] [Cite] β”‚
579
+ β”‚ β”‚
580
+ β”‚ πŸ“Š Implementation Faithfulness: 87% β”‚
581
+ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
582
+ ```
583
+
584
+ ---
585
+
586
+ ## πŸš€ Implementation Priority
587
+
588
+ ### Phase 1: Core Research Infrastructure (Week 1-2)
589
+ 1. βœ… Attention visualization
590
+ 2. βœ… RAG pipeline inspector
591
+ 3. βœ… Uncertainty quantification
592
+ 4. βœ… Paper reference system
593
+
594
+ ### Phase 2: Advanced Reasoning (Week 3-4)
595
+ 5. βœ… Tree-of-Thoughts
596
+ 6. βœ… Knowledge graph
597
+ 7. βœ… Meta-learning adaptation
598
+ 8. βœ… Cognitive load estimation
599
+
600
+ ### Phase 3: Safety & Alignment (Week 5)
601
+ 9. βœ… Constitutional AI
602
+ 10. βœ… Preference learning (DPO)
603
+ 11. βœ… Hallucination detection
604
+
605
+ ### Phase 4: Polish & Deploy (Week 6)
606
+ 12. βœ… Multimodal support
607
+ 13. βœ… Research playground
608
+ 14. βœ… Documentation & demos
609
+
610
+ ---
611
+
612
+ ## 🎯 Success Metrics
613
+
614
+ ### For Research Positioning
615
+ - βœ“ Cite 15+ recent papers (2020-2024)
616
+ - βœ“ Implement 3+ state-of-the-art techniques
617
+ - βœ“ Provide interactive visualizations for each
618
+ - βœ“ Show rigorous evaluation metrics
619
+
620
+ ### For User Engagement
621
+ - βœ“ 10+ interactive research features
622
+ - βœ“ Export-quality visualizations
623
+ - βœ“ Developer-friendly API
624
+ - βœ“ Reproducible experiments
625
+
626
+ ---
627
+
628
+ ## πŸ’‘ Unique Value Proposition
629
+
630
+ **"The only AI tutor that shows its work at the research level"**
631
+
632
+ - See actual attention patterns (not just outputs)
633
+ - Understand retrieval and reasoning (not black box)
634
+ - Track learning with cognitive science (not just analytics)
635
+ - Reference cutting-edge papers (academic credibility)
636
+ - Experiment with AI techniques (interactive research)
637
+
638
+ This positions you as a **research lab** that:
639
+ 1. Understands the latest AI/ML advances
640
+ 2. Implements them rigorously
641
+ 3. Makes them accessible and educational
642
+ 4. Contributes to interpretability research
643
+
644
+ ---
645
+
646
+ **Next Steps:** Pick 2-3 features from Phase 1 to prototype first?