File size: 13,988 Bytes
302920f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Prompt-based methods
A prompt can describe a task or provide an example of a task you want the model to learn. Instead of manually creating these prompts, soft prompting methods add learnable parameters to the input embeddings that can be optimized for a specific task while keeping the pretrained model's parameters frozen. This makes it both faster and easier to finetune large language models (LLMs) for new downstream tasks.
The PEFT library supports several types of prompting methods (p-tuning, prefix tuning, prompt tuning) and you can learn more about how these methods work conceptually in the [Soft prompts](../conceptual_guides/prompting) guide. If you're interested in applying these methods to other tasks and use cases, take a look at our [notebook collection](https://huggingface.co/spaces/PEFT/soft-prompting)!
This guide will show you how to train a causal language model - with a soft prompting method - to *generate a classification* for whether a tweet is a complaint or not.
> [!TIP]
> Some familiarity with the general process of training a causal language model would be really helpful and allow you to focus on the soft prompting methods. If you're new, we recommend taking a look at the [Causal language modeling](https://huggingface.co/docs/transformers/tasks/language_modeling) guide first from the Transformers documentation. When you're ready, come back and see how easy it is to drop PEFT in to your training!
Before you begin, make sure you have all the necessary libraries installed.
```bash
pip install -q peft transformers datasets
```
## Dataset
For this guide, you'll use the `twitter_complaints` subset of the [RAFT](https://huggingface.co/datasets/ought/raft) dataset. The `twitter_complaints` subset contains tweets labeled as `complaint` and `no complaint` and you can check out the [dataset viewer](https://huggingface.co/datasets/ought/raft/viewer/twitter_complaints) for a better idea of what the data looks like.
Use the [`~datasets.load_dataset`] function to load the dataset and create a new `text_label` column so it is easier to understand what the `Label` values, `1` and `2` mean.
```py
from datasets import load_dataset
ds = load_dataset(
"parquet",
data_files={
"train": "hf://datasets/ought/raft@refs/convert/parquet/twitter_complaints/train/0000.parquet",
"test": "hf://datasets/ought/raft@refs/convert/parquet/twitter_complaints/test/0000.parquet"
}
)
classes = [k.replace("_", " ") for k in ds["train"].features["Label"].names]
ds = ds.map(
lambda x: {"text_label": [classes[label] for label in x["Label"]]},
batched=True,
num_proc=1,
)
ds["train"][0]
{"Tweet text": "@HMRCcustomers No this is my first job", "ID": 0, "Label": 2, "text_label": "no complaint"}
```
Load a tokenizer, define the padding token to use, and determine the maximum length of the tokenized label.
```py
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("bigscience/bloomz-560m")
if tokenizer.pad_token_id is None:
tokenizer.pad_token_id = tokenizer.eos_token_id
target_max_length = max([len(tokenizer(class_label)["input_ids"]) for class_label in classes])
print(target_max_length)
```
Create a preprocessing function that tokenizes the tweet text and labels, pad the inputs and labels in each batch, create an attention mask, and truncate sequences to the `max_length`. Then convert the `input_ids`, `attention_mask`, and `labels` to PyTorch tensors.
```py
import torch
max_length = 64
def preprocess_function(examples, text_column="Tweet text", label_column="text_label"):
batch_size = len(examples[text_column])
inputs = [f"{text_column} : {x} Label : " for x in examples[text_column]]
targets = [str(x) for x in examples[label_column]]
model_inputs = tokenizer(inputs)
labels = tokenizer(targets)
classes = [k.replace("_", " ") for k in ds["train"].features["Label"].names]
for i in range(batch_size):
sample_input_ids = model_inputs["input_ids"][i]
label_input_ids = labels["input_ids"][i]
model_inputs["input_ids"][i] = [tokenizer.pad_token_id] * (
max_length - len(sample_input_ids)
) + sample_input_ids
model_inputs["attention_mask"][i] = [0] * (max_length - len(sample_input_ids)) + model_inputs[
"attention_mask"
][i]
labels["input_ids"][i] = [-100] * (max_length - len(label_input_ids)) + label_input_ids
model_inputs["input_ids"][i] = torch.tensor(model_inputs["input_ids"][i][:max_length])
model_inputs["attention_mask"][i] = torch.tensor(model_inputs["attention_mask"][i][:max_length])
labels["input_ids"][i] = torch.tensor(labels["input_ids"][i][:max_length])
model_inputs["labels"] = labels["input_ids"]
return model_inputs
```
Apply the preprocessing function to the entire dataset with the [`~datasets.Dataset.map`] function, and remove the unprocessed columns because the model won't need them.
```py
processed_ds = ds.map(
preprocess_function,
batched=True,
num_proc=1,
remove_columns=ds["train"].column_names,
load_from_cache_file=False,
desc="Running tokenizer on dataset",
)
```
Finally, create a training and evaluation [`DataLoader`](https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader). You can set `pin_memory=True` to speed up the data transfer to the GPU during training if the samples in your dataset are on a CPU.
```py
from torch.utils.data import DataLoader
from transformers import default_data_collator
train_ds = processed_ds["train"]
eval_ds = processed_ds["test"]
batch_size = 16
train_dataloader = DataLoader(train_ds, shuffle=True, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True)
eval_dataloader = DataLoader(eval_ds, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True)
```
## Model
Now let's load a pretrained model to use as the base model for the soft prompt method. This guide uses the [bigscience/bloomz-560m](https://huggingface.co/bigscience/bloomz-560m) model, but you can use any causal language model you want.
```py
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained("bigscience/bloomz-560m")
```
### PEFT configuration and model
For any PEFT method, you'll need to create a configuration which contains all the parameters that specify how the PEFT method should be applied. Once the configuration is setup, pass it to the [`~peft.get_peft_model`] function along with the base model to create a trainable [`PeftModel`].
> [!TIP]
> Call the [`~PeftModel.print_trainable_parameters`] method to compare the number of trainable parameters of [`PeftModel`] versus the number of parameters in the base model!
<hfoptions id="configurations">
<hfoption id="p-tuning">
[P-tuning](../conceptual_guides/prompting#p-tuning) adds a trainable embedding tensor where the prompt tokens can be added anywhere in the input sequence. Create a [`PromptEncoderConfig`] with the task type, the number of virtual tokens to add and learn, and the hidden size of the encoder for learning the prompt parameters.
```py
from peft import PromptEncoderConfig, get_peft_model
peft_config = PromptEncoderConfig(task_type="CAUSAL_LM", num_virtual_tokens=20, encoder_hidden_size=128)
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()
"trainable params: 300,288 || all params: 559,514,880 || trainable%: 0.05366935013417338"
```
</hfoption>
<hfoption id="prefix tuning">
[Prefix tuning](../conceptual_guides/prompting#prefix-tuning) adds task-specific parameters in all of the model layers, which are optimized by a separate feed-forward network. Create a [`PrefixTuningConfig`] with the task type and number of virtual tokens to add and learn.
```py
from peft import PrefixTuningConfig, get_peft_model
peft_config = PrefixTuningConfig(task_type="CAUSAL_LM", num_virtual_tokens=20)
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()
"trainable params: 983,040 || all params: 560,197,632 || trainable%: 0.1754809274167014"
```
</hfoption>
<hfoption id="prompt tuning">
[Prompt tuning](../conceptual_guides/prompting#prompt-tuning) formulates all tasks as a *generation* task and it adds a task-specific prompt to the input which is updated independently. The `prompt_tuning_init_text` parameter specifies how to finetune the model (in this case, it is classifying whether tweets are complaints or not). For the best results, the `prompt_tuning_init_text` should have the same number of tokens that should be predicted. To do this, you can set `num_virtual_tokens` to the number of tokens of the `prompt_tuning_init_text`.
Create a [`PromptTuningConfig`] with the task type, the initial prompt tuning text to train the model with, the number of virtual tokens to add and learn, and a tokenizer.
```py
from peft import PromptTuningConfig, PromptTuningInit, get_peft_model
prompt_tuning_init_text = "Classify if the tweet is a complaint or no complaint.\n"
peft_config = PromptTuningConfig(
task_type="CAUSAL_LM",
prompt_tuning_init=PromptTuningInit.TEXT,
num_virtual_tokens=len(tokenizer(prompt_tuning_init_text)["input_ids"]),
prompt_tuning_init_text=prompt_tuning_init_text,
tokenizer_name_or_path="bigscience/bloomz-560m",
)
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()
"trainable params: 8,192 || all params: 559,222,784 || trainable%: 0.0014648902430985358"
```
</hfoption>
</hfoptions>
### Training
Set up an optimizer and learning rate scheduler.
```py
from transformers import get_linear_schedule_with_warmup
lr = 3e-2
num_epochs = 50
optimizer = torch.optim.AdamW(model.parameters(), lr=lr)
lr_scheduler = get_linear_schedule_with_warmup(
optimizer=optimizer,
num_warmup_steps=0,
num_training_steps=(len(train_dataloader) * num_epochs),
)
```
Move the model to the GPU and create a training loop that reports the loss and perplexity for each epoch.
```py
from tqdm import tqdm
device = "cuda"
model = model.to(device)
for epoch in range(num_epochs):
model.train()
total_loss = 0
for step, batch in enumerate(tqdm(train_dataloader)):
batch = {k: v.to(device) for k, v in batch.items()}
outputs = model(**batch)
loss = outputs.loss
total_loss += loss.detach().float()
loss.backward()
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
eval_loss = 0
eval_preds = []
for step, batch in enumerate(tqdm(eval_dataloader)):
batch = {k: v.to(device) for k, v in batch.items()}
with torch.no_grad():
outputs = model(**batch)
loss = outputs.loss
eval_loss += loss.detach().float()
eval_preds.extend(
tokenizer.batch_decode(torch.argmax(outputs.logits, -1).detach().cpu().numpy(), skip_special_tokens=True)
)
eval_epoch_loss = eval_loss / len(eval_dataloader)
eval_ppl = torch.exp(eval_epoch_loss)
train_epoch_loss = total_loss / len(train_dataloader)
train_ppl = torch.exp(train_epoch_loss)
print(f"{epoch=}: {train_ppl=} {train_epoch_loss=} {eval_ppl=} {eval_epoch_loss=}")
```
## Share your model
Once training is complete, you can upload your model to the Hub with the [`~transformers.PreTrainedModel.push_to_hub`] method. You'll need to login to your Hugging Face account first and enter your token when prompted.
```py
from huggingface_hub import notebook_login
account = <your-hf-account-name>
peft_model_id = f"{account}/bloomz-560-m-peft-method"
model.push_to_hub(peft_model_id)
```
If you check the model file size in the repository, you’ll see that it is a lot smaller than a full sized model!
<div class="flex flex-col justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/peft/PEFT-hub-screenshot.png"/>
<figcaption class="text-center">For example, the adapter weights for a opt-350m model stored on the Hub are only ~6MB compared to the full model size which can be ~700MB.</figcaption>
</div>
## Inference
Let's load the model for inference and test it out on a tweet!
```py
from peft import AutoPeftModelForCausalLM
model = AutoPeftModelForCausalLM.from_pretrained("peft_model_id").to("cuda")
tokenizer = AutoTokenizer.from_pretrained("bigscience/bloomz-560m")
i = 15
inputs = tokenizer(f'{text_column} : {ds["test"][i]["Tweet text"]} Label : ', return_tensors="pt")
print(ds["test"][i]["Tweet text"])
"@NYTsupport i have complained a dozen times & yet my papers are still thrown FAR from my door. Why is this so hard to resolve?"
```
Call the [`~transformers.GenerationMixin.generate`] method to generate the predicted classification label.
```py
with torch.no_grad():
inputs = {k: v.to(device) for k, v in inputs.items()}
outputs = model.generate(input_ids=inputs["input_ids"], max_new_tokens=10)
print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True))
"['Tweet text : @NYTsupport i have complained a dozen times & yet my papers are still thrown FAR from my door. Why is this so hard to resolve? Label : complaint']"
```
|