File size: 6,277 Bytes
f472b08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
from dataclasses import dataclass, field
from typing import Optional

import torch
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, HfArgumentParser
from trl import SFTConfig, SFTTrainer

from peft import LoraConfig, PeftModel, get_peft_model, prepare_model_for_kbit_training


@dataclass
class ScriptArguments(SFTConfig):
    # model configs
    base_model_name_or_path: Optional[str] = field(
        default=None, metadata={"help": "The name or path of the fp32/16 base model."}
    )
    residual_model_name_or_path: Optional[str] = field(
        default=None,
        metadata={
            "help": "The name or path of the fp32/16 residual model. (`['fxmeng/pissa-llama-2-7b-r16-alpha-16']`)"
        },
    )
    bits: str = field(default="fp32", metadata={"help": "(`['fp4', 'nf4', 'int8', 'bf16', 'fp16', fp32]`)"})
    init_lora_weights: str = field(default="pissa", metadata={"help": "(`['gaussian', 'pissa', 'pissa_niter_4']`)"})
    lora_r: int = field(default=16)
    lora_alpha: int = field(default=16)
    lora_dropout: float = field(default=0)
    convert_pissa_to_lora: bool = field(default=False)
    merge_and_save: bool = field(default=False)
    # dataset configs
    data_path: str = field(default="imdb", metadata={"help": "Path to the training data."})
    dataset_split: str = field(default="train[:1%]", metadata={"help": "(`['train', 'test', 'eval']`):"})
    dataset_field: list[str] = field(default=None, metadata={"help": "Fields of dataset input and output."})


parser = HfArgumentParser(ScriptArguments)
script_args = parser.parse_args_into_dataclasses()[0]
print(script_args)

print(f"Load pre-processed residual model in {script_args.bits} bits.")
if script_args.bits in ["nf4", "fp4", "int8"]:
    quantization_config = BitsAndBytesConfig(
        load_in_4bit=(script_args.bits == "nf4" or script_args.bits == "fp4"),
        load_in_8bit=script_args.bits == "int8",
        bnb_4bit_quant_type=script_args.bits,
        bnb_4bit_use_double_quant=True,
        bnb_4bit_compute_dtype=torch.bfloat16,
    )
    res_model = AutoModelForCausalLM.from_pretrained(
        script_args.residual_model_name_or_path, quantization_config=quantization_config, low_cpu_mem_usage=True
    )
    res_model = prepare_model_for_kbit_training(res_model)
    print("Wrapping the residual model with PiSSA.")
    peft_model = PeftModel.from_pretrained(
        res_model, script_args.residual_model_name_or_path, subfolder="pissa_init", is_trainable=True
    )
    tokenizer = AutoTokenizer.from_pretrained(script_args.residual_model_name_or_path)

elif script_args.residual_model_name_or_path is not None:
    res_model = AutoModelForCausalLM.from_pretrained(
        script_args.residual_model_name_or_path,
        torch_dtype=(
            torch.float16
            if script_args.bits == "fp16"
            else (torch.bfloat16 if script_args.bits == "bf16" else torch.float32)
        ),
        device_map="auto",
    )
    print("Wrapping the residual model with PiSSA.")
    peft_model = PeftModel.from_pretrained(
        res_model, script_args.residual_model_name_or_path, subfolder="pissa_init", is_trainable=True
    )
    tokenizer = AutoTokenizer.from_pretrained(script_args.residual_model_name_or_path)

elif script_args.base_model_name_or_path is not None:
    print(
        f"No available pre-processed model, manually initialize a PiSSA using {script_args.base_model_name_or_path}."
    )
    model = AutoModelForCausalLM.from_pretrained(
        script_args.base_model_name_or_path,
        torch_dtype=(
            torch.float16
            if script_args.bits == "fp16"
            else (torch.bfloat16 if script_args.bits == "bf16" else torch.float32)
        ),
        device_map="auto",
    )
    tokenizer = AutoTokenizer.from_pretrained(script_args.base_model_name_or_path)
    tokenizer.pad_token_id = tokenizer.eos_token_id
    lora_config = LoraConfig(
        r=script_args.lora_r,
        lora_alpha=script_args.lora_alpha,
        init_lora_weights=script_args.init_lora_weights,
        lora_dropout=script_args.lora_dropout,
        target_modules=["q_proj", "o_proj", "k_proj", "v_proj", "gate_proj", "up_proj", "down_proj"],
        bias="none",
        task_type="CAUSAL_LM",
    )
    peft_model = get_peft_model(model, lora_config)

print(peft_model)
peft_model.print_trainable_parameters()

print(f"Training PiSSA with trl on the {script_args.data_path}[{script_args.dataset_split}] dataset.")
dataset = load_dataset(script_args.data_path, split=script_args.dataset_split)
dataset = dataset.map(
    lambda example: {
        "text": f"### USER: {example[script_args.dataset_field[0]]}\n### ASSISTANT: {example[script_args.dataset_field[1]]}"
    }
)

trainer = SFTTrainer(
    model=peft_model,
    args=script_args,
    train_dataset=dataset,
    processing_class=tokenizer,
)
trainer.train()
trainer.save_state()
############################## Upon training completion, convert and save PiSSA in LoRA format ##############################
if script_args.convert_pissa_to_lora:
    peft_model.save_pretrained(
        os.path.join(script_args.output_dir, "pissa_lora"),
        path_initial_model_for_weight_conversion=os.path.join(script_args.residual_model_name_or_path, "pissa_init"),
    )
else:
    peft_model.save_pretrained(
        os.path.join(script_args.output_dir, "pissa_ft"),
    )

if script_args.merge_and_save:
    model = peft_model.merge_and_unload()
    model.save_pretrained(os.path.join(script_args.output_dir, "pissa_merged"))
    tokenizer.save_pretrained(os.path.join(script_args.output_dir, "pissa_merged"))