# Models [`PeftModel`] is the base model class for specifying the base Transformer model and configuration to apply a PEFT method to. The base `PeftModel` contains methods for loading and saving models from the Hub. ## PeftModel [[autodoc]] PeftModel - all ## PeftModelForSequenceClassification A `PeftModel` for sequence classification tasks. [[autodoc]] PeftModelForSequenceClassification - all ## PeftModelForTokenClassification A `PeftModel` for token classification tasks. [[autodoc]] PeftModelForTokenClassification - all ## PeftModelForCausalLM A `PeftModel` for causal language modeling. [[autodoc]] PeftModelForCausalLM - all ## PeftModelForSeq2SeqLM A `PeftModel` for sequence-to-sequence language modeling. [[autodoc]] PeftModelForSeq2SeqLM - all ## PeftModelForQuestionAnswering A `PeftModel` for question answering. [[autodoc]] PeftModelForQuestionAnswering - all ## PeftModelForFeatureExtraction A `PeftModel` for getting extracting features/embeddings from transformer models. [[autodoc]] PeftModelForFeatureExtraction - all ## PeftMixedModel A `PeftModel` for mixing different adapter types (e.g. LoRA and LoHa). [[autodoc]] PeftMixedModel - all ## Utilities [[autodoc]] utils.cast_mixed_precision_params [[autodoc]] get_peft_model [[autodoc]] inject_adapter_in_model [[autodoc]] utils.get_peft_model_state_dict [[autodoc]] utils.prepare_model_for_kbit_training [[autodoc]] get_layer_status [[autodoc]] get_model_status