# Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tempfile import torch from transformers import AutoModelForCausalLM, AutoTokenizer from peft import ( AutoPeftModel, AutoPeftModelForCausalLM, AutoPeftModelForFeatureExtraction, AutoPeftModelForQuestionAnswering, AutoPeftModelForSeq2SeqLM, AutoPeftModelForSequenceClassification, AutoPeftModelForTokenClassification, LoraConfig, PeftModel, PeftModelForCausalLM, PeftModelForFeatureExtraction, PeftModelForQuestionAnswering, PeftModelForSeq2SeqLM, PeftModelForSequenceClassification, PeftModelForTokenClassification, get_peft_model, ) from peft.utils import infer_device class TestPeftAutoModel: dtype = torch.float16 if infer_device() == "mps" else torch.bfloat16 def test_peft_causal_lm(self): model_id = "peft-internal-testing/tiny-OPTForCausalLM-lora" model = AutoPeftModelForCausalLM.from_pretrained(model_id) assert isinstance(model, PeftModelForCausalLM) with tempfile.TemporaryDirectory() as tmp_dirname: model.save_pretrained(tmp_dirname) model = AutoPeftModelForCausalLM.from_pretrained(tmp_dirname) assert isinstance(model, PeftModelForCausalLM) # check if kwargs are passed correctly model = AutoPeftModelForCausalLM.from_pretrained(model_id, torch_dtype=self.dtype) assert isinstance(model, PeftModelForCausalLM) assert model.base_model.lm_head.weight.dtype == self.dtype adapter_name = "default" is_trainable = False # This should work _ = AutoPeftModelForCausalLM.from_pretrained(model_id, adapter_name, is_trainable, torch_dtype=self.dtype) def test_peft_causal_lm_extended_vocab(self): model_id = "peft-internal-testing/tiny-random-OPTForCausalLM-extended-vocab" model = AutoPeftModelForCausalLM.from_pretrained(model_id) assert isinstance(model, PeftModelForCausalLM) # check if kwargs are passed correctly model = AutoPeftModelForCausalLM.from_pretrained(model_id, torch_dtype=self.dtype) assert isinstance(model, PeftModelForCausalLM) assert model.base_model.lm_head.weight.dtype == self.dtype adapter_name = "default" is_trainable = False # This should work _ = AutoPeftModelForCausalLM.from_pretrained(model_id, adapter_name, is_trainable, torch_dtype=self.dtype) def test_peft_seq2seq_lm(self): model_id = "peft-internal-testing/tiny_T5ForSeq2SeqLM-lora" model = AutoPeftModelForSeq2SeqLM.from_pretrained(model_id) assert isinstance(model, PeftModelForSeq2SeqLM) with tempfile.TemporaryDirectory() as tmp_dirname: model.save_pretrained(tmp_dirname) model = AutoPeftModelForSeq2SeqLM.from_pretrained(tmp_dirname) assert isinstance(model, PeftModelForSeq2SeqLM) # check if kwargs are passed correctly model = AutoPeftModelForSeq2SeqLM.from_pretrained(model_id, torch_dtype=self.dtype) assert isinstance(model, PeftModelForSeq2SeqLM) assert model.base_model.lm_head.weight.dtype == self.dtype adapter_name = "default" is_trainable = False # This should work _ = AutoPeftModelForSeq2SeqLM.from_pretrained(model_id, adapter_name, is_trainable, torch_dtype=self.dtype) def test_peft_sequence_cls(self): model_id = "peft-internal-testing/tiny_OPTForSequenceClassification-lora" model = AutoPeftModelForSequenceClassification.from_pretrained(model_id) assert isinstance(model, PeftModelForSequenceClassification) with tempfile.TemporaryDirectory() as tmp_dirname: model.save_pretrained(tmp_dirname) model = AutoPeftModelForSequenceClassification.from_pretrained(tmp_dirname) assert isinstance(model, PeftModelForSequenceClassification) # check if kwargs are passed correctly model = AutoPeftModelForSequenceClassification.from_pretrained(model_id, torch_dtype=self.dtype) assert isinstance(model, PeftModelForSequenceClassification) assert model.score.original_module.weight.dtype == self.dtype adapter_name = "default" is_trainable = False # This should work _ = AutoPeftModelForSequenceClassification.from_pretrained( model_id, adapter_name, is_trainable, torch_dtype=self.dtype ) def test_peft_token_classification(self): model_id = "peft-internal-testing/tiny_GPT2ForTokenClassification-lora" model = AutoPeftModelForTokenClassification.from_pretrained(model_id) assert isinstance(model, PeftModelForTokenClassification) with tempfile.TemporaryDirectory() as tmp_dirname: model.save_pretrained(tmp_dirname) model = AutoPeftModelForTokenClassification.from_pretrained(tmp_dirname) assert isinstance(model, PeftModelForTokenClassification) # check if kwargs are passed correctly model = AutoPeftModelForTokenClassification.from_pretrained(model_id, torch_dtype=self.dtype) assert isinstance(model, PeftModelForTokenClassification) assert model.base_model.classifier.original_module.weight.dtype == self.dtype adapter_name = "default" is_trainable = False # This should work _ = AutoPeftModelForTokenClassification.from_pretrained( model_id, adapter_name, is_trainable, torch_dtype=self.dtype ) def test_peft_question_answering(self): model_id = "peft-internal-testing/tiny_OPTForQuestionAnswering-lora" model = AutoPeftModelForQuestionAnswering.from_pretrained(model_id) assert isinstance(model, PeftModelForQuestionAnswering) with tempfile.TemporaryDirectory() as tmp_dirname: model.save_pretrained(tmp_dirname) model = AutoPeftModelForQuestionAnswering.from_pretrained(tmp_dirname) assert isinstance(model, PeftModelForQuestionAnswering) # check if kwargs are passed correctly model = AutoPeftModelForQuestionAnswering.from_pretrained(model_id, torch_dtype=self.dtype) assert isinstance(model, PeftModelForQuestionAnswering) assert model.base_model.qa_outputs.original_module.weight.dtype == self.dtype adapter_name = "default" is_trainable = False # This should work _ = AutoPeftModelForQuestionAnswering.from_pretrained( model_id, adapter_name, is_trainable, torch_dtype=self.dtype ) def test_peft_feature_extraction(self): model_id = "peft-internal-testing/tiny_OPTForFeatureExtraction-lora" model = AutoPeftModelForFeatureExtraction.from_pretrained(model_id) assert isinstance(model, PeftModelForFeatureExtraction) with tempfile.TemporaryDirectory() as tmp_dirname: model.save_pretrained(tmp_dirname) model = AutoPeftModelForFeatureExtraction.from_pretrained(tmp_dirname) assert isinstance(model, PeftModelForFeatureExtraction) # check if kwargs are passed correctly model = AutoPeftModelForFeatureExtraction.from_pretrained(model_id, torch_dtype=self.dtype) assert isinstance(model, PeftModelForFeatureExtraction) assert model.base_model.model.decoder.embed_tokens.weight.dtype == self.dtype adapter_name = "default" is_trainable = False # This should work _ = AutoPeftModelForFeatureExtraction.from_pretrained( model_id, adapter_name, is_trainable, torch_dtype=self.dtype ) def test_peft_whisper(self): model_id = "peft-internal-testing/tiny_WhisperForConditionalGeneration-lora" model = AutoPeftModel.from_pretrained(model_id) assert isinstance(model, PeftModel) with tempfile.TemporaryDirectory() as tmp_dirname: model.save_pretrained(tmp_dirname) model = AutoPeftModel.from_pretrained(tmp_dirname) assert isinstance(model, PeftModel) # check if kwargs are passed correctly model = AutoPeftModel.from_pretrained(model_id, torch_dtype=self.dtype) assert isinstance(model, PeftModel) assert model.base_model.model.model.encoder.embed_positions.weight.dtype == self.dtype adapter_name = "default" is_trainable = False # This should work _ = AutoPeftModel.from_pretrained(model_id, adapter_name, is_trainable, torch_dtype=self.dtype) def test_embedding_size_not_reduced_if_greater_vocab_size(self, tmp_path): # See 2415 # There was a bug in AutoPeftModels where the embedding was always resized to the vocab size of the tokenizer # when the tokenizer was found. This makes sense if the vocabulary was extended, but some models like Qwen # already start out with "spare" embeddings, i.e. the embedding size is larger than the vocab size. This could # result in the embedding being shrunk, which in turn resulted in an error when loading the weights. # first create a checkpoint; it is important that the tokenizer is also saved in the same location model_id = "Qwen/Qwen2-0.5B" model = AutoModelForCausalLM.from_pretrained(model_id) tokenizer = AutoTokenizer.from_pretrained(model_id) model = get_peft_model(model, LoraConfig(modules_to_save=["lm_head", "embed_token"])) model.save_pretrained(tmp_path) tokenizer.save_pretrained(tmp_path) # does not raise; without the fix, it raises: # > size mismatch for base_model.model.lm_head.modules_to_save.default.weight: copying a param with shape # torch.Size([151936, 896]) from checkpoint, the shape in current model is torch.Size([151646, 896]). AutoPeftModelForCausalLM.from_pretrained(tmp_path)