import gradio as gr import numpy as np import soundfile as sf import os import uuid import torch from transformers import VitsModel, VitsTokenizer, set_seed # 1. Load MMS-TTS English model (lighter than Bark) MODEL_ID = "facebook/mms-tts-eng" tokenizer = VitsTokenizer.from_pretrained(MODEL_ID) model = VitsModel.from_pretrained(MODEL_ID) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = model.to(device) # Optional: make outputs deterministic set_seed(555) MAX_CHARS = 300 # keep text short for speed and stability def generate_speech(text: str) -> str: """ Take text, synthesize speech with MMS-TTS, save to a WAV file, and return the filepath (for gr.Audio(type="filepath")). """ if not text or text.strip() == "": raise gr.Error("Please enter some text 🙂") text = text.strip() if len(text) > MAX_CHARS: text = text[:MAX_CHARS] # You could also show a warning text if you like. # MMS-TTS is trained on lowercased, unpunctuated text → simple normalization normalized_text = text.lower() # 1) Tokenize inputs = tokenizer(text=normalized_text, return_tensors="pt").to(device) # 2) Forward pass with torch.no_grad(): outputs = model(**inputs) # 3) Get waveform and sampling rate waveform = outputs.waveform[0].cpu().numpy().astype(np.float32) sr = model.config.sampling_rate # typically 16000 # 4) Save to /tmp as WAV tmp_dir = "/tmp" os.makedirs(tmp_dir, exist_ok=True) filename = f"tts_{uuid.uuid4().hex}.wav" filepath = os.path.join(tmp_dir, filename) sf.write(filepath, waveform, sr) # 5) Return file path for gr.Audio(type="filepath") return filepath with gr.Blocks() as demo: gr.Markdown("# 🗣️ Англи текстийг яриа болгох \n\n --- Simple TTS with facebook/mms-tts-eng") gr.Markdown( "Энд англи дээр өгүүлбэрээ бичээд **Яриаг үүсгэ** товчийг дарж англи яриаг сонсоорой. \n\n" "Model: `facebook/mms-tts-eng` (MMS-TTS, VITS-based)." ) with gr.Row(): with gr.Column(scale=2): text_input = gr.Textbox( label="Яриа болгох англи өгүүлбэр", placeholder="Жишээ: Hello, this is my text-to-speech demo", lines=3, ) generate_button = gr.Button("Яриаг үүсгэнэ үү", variant="primary") with gr.Column(scale=1): audio_output = gr.Audio( label="Үүссэн бичлэг", type="filepath", # we return a path string ) generate_button.click( fn=generate_speech, inputs=text_input, outputs=audio_output, ) if __name__ == "__main__": demo.launch(ssr_mode=False)