File size: 783 Bytes
0def483
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
"""
Model loading and device utilities.
"""

import torch
from model import HAT
from config import MODEL_CHECKPOINT, MODEL_CONFIG


def get_device():
    """Get the appropriate device for model inference."""
    return torch.device('cuda' if torch.cuda.is_available() else 'cpu')


def load_model():
    """Load and initialize the HAT model with pre-trained weights."""
    device = get_device()

    # Initialize model
    model = HAT(**MODEL_CONFIG)

    # Load the fine-tuned weights
    checkpoint = torch.load(MODEL_CHECKPOINT, map_location=device)
    # Try different checkpoint formats
    state_dict = checkpoint.get('params_ema') or checkpoint.get('params') or checkpoint
    model.load_state_dict(state_dict)

    model.to(device)
    model.eval()

    return model, device