Spaces:
Runtime error
Runtime error
feat: Add support for video input and frame-by-frame processing in YOLOv10 Gradio app
Browse files
app.py
CHANGED
|
@@ -3,7 +3,8 @@ from ultralytics import YOLOv10
|
|
| 3 |
import supervision as sv
|
| 4 |
import spaces
|
| 5 |
from huggingface_hub import hf_hub_download
|
| 6 |
-
|
|
|
|
| 7 |
|
| 8 |
def download_models(model_id):
|
| 9 |
hf_hub_download("BoukamchaSmartVisions/Yolov10", filename=f"{model_id}", local_dir=f"./")
|
|
@@ -29,7 +30,6 @@ category_dict = {
|
|
| 29 |
77: 'teddy bear', 78: 'hair drier', 79: 'toothbrush'
|
| 30 |
}
|
| 31 |
|
| 32 |
-
|
| 33 |
@spaces.GPU(duration=200)
|
| 34 |
def yolov10_inference(image, model_id, image_size, conf_threshold, iou_threshold):
|
| 35 |
model_path = download_models(model_id)
|
|
@@ -45,12 +45,55 @@ def yolov10_inference(image, model_id, image_size, conf_threshold, iou_threshold
|
|
| 45 |
|
| 46 |
return annotated_image
|
| 47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
def app():
|
| 49 |
with gr.Blocks():
|
| 50 |
with gr.Row():
|
| 51 |
with gr.Column():
|
| 52 |
-
|
| 53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
model_id = gr.Dropdown(
|
| 55 |
label="Model",
|
| 56 |
choices=[
|
|
@@ -87,53 +130,73 @@ def app():
|
|
| 87 |
yolov10_infer = gr.Button(value="Detect Objects")
|
| 88 |
|
| 89 |
with gr.Column():
|
| 90 |
-
output_image = gr.Image(type="numpy", label="Annotated Image")
|
|
|
|
| 91 |
|
| 92 |
yolov10_infer.click(
|
| 93 |
-
fn=yolov10_inference,
|
| 94 |
inputs=[
|
|
|
|
| 95 |
image,
|
|
|
|
| 96 |
model_id,
|
| 97 |
image_size,
|
| 98 |
conf_threshold,
|
| 99 |
iou_threshold,
|
| 100 |
],
|
| 101 |
-
outputs=[output_image],
|
| 102 |
)
|
| 103 |
|
| 104 |
gr.Examples(
|
| 105 |
examples=[
|
| 106 |
[
|
|
|
|
| 107 |
"Animals_persones.jpg",
|
|
|
|
| 108 |
"yolov10x.pt",
|
| 109 |
640,
|
| 110 |
0.25,
|
| 111 |
0.45,
|
| 112 |
],
|
| 113 |
[
|
|
|
|
| 114 |
"collage-horses-other-pets-white.jpg",
|
|
|
|
| 115 |
"yolov10m.pt",
|
| 116 |
640,
|
| 117 |
0.25,
|
| 118 |
0.45,
|
| 119 |
],
|
| 120 |
[
|
|
|
|
| 121 |
"Ville.png",
|
|
|
|
| 122 |
"yolov10b.pt",
|
| 123 |
640,
|
| 124 |
0.25,
|
| 125 |
0.45,
|
| 126 |
],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
],
|
| 128 |
-
fn=yolov10_inference,
|
| 129 |
inputs=[
|
|
|
|
| 130 |
image,
|
|
|
|
| 131 |
model_id,
|
| 132 |
image_size,
|
| 133 |
conf_threshold,
|
| 134 |
iou_threshold,
|
| 135 |
],
|
| 136 |
-
outputs=[output_image],
|
| 137 |
cache_examples=True,
|
| 138 |
)
|
| 139 |
|
|
@@ -156,4 +219,4 @@ with gradio_app:
|
|
| 156 |
with gr.Column():
|
| 157 |
app()
|
| 158 |
|
| 159 |
-
gradio_app.launch(debug=True)
|
|
|
|
| 3 |
import supervision as sv
|
| 4 |
import spaces
|
| 5 |
from huggingface_hub import hf_hub_download
|
| 6 |
+
import cv2
|
| 7 |
+
import tempfile
|
| 8 |
|
| 9 |
def download_models(model_id):
|
| 10 |
hf_hub_download("BoukamchaSmartVisions/Yolov10", filename=f"{model_id}", local_dir=f"./")
|
|
|
|
| 30 |
77: 'teddy bear', 78: 'hair drier', 79: 'toothbrush'
|
| 31 |
}
|
| 32 |
|
|
|
|
| 33 |
@spaces.GPU(duration=200)
|
| 34 |
def yolov10_inference(image, model_id, image_size, conf_threshold, iou_threshold):
|
| 35 |
model_path = download_models(model_id)
|
|
|
|
| 45 |
|
| 46 |
return annotated_image
|
| 47 |
|
| 48 |
+
def yolov10_video_inference(video, model_id, image_size, conf_threshold, iou_threshold):
|
| 49 |
+
model_path = download_models(model_id)
|
| 50 |
+
model = YOLOv10(model_path)
|
| 51 |
+
|
| 52 |
+
cap = cv2.VideoCapture(video)
|
| 53 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
| 54 |
+
out = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
|
| 55 |
+
out_path = out.name
|
| 56 |
+
|
| 57 |
+
ret, frame = cap.read()
|
| 58 |
+
height, width, _ = frame.shape
|
| 59 |
+
writer = cv2.VideoWriter(out_path, fourcc, 30, (width, height))
|
| 60 |
+
|
| 61 |
+
while ret:
|
| 62 |
+
results = model(source=frame, imgsz=image_size, iou=iou_threshold, conf=conf_threshold, verbose=False)[0]
|
| 63 |
+
detections = sv.Detections.from_ultralytics(results)
|
| 64 |
+
|
| 65 |
+
labels = [
|
| 66 |
+
f"{category_dict[class_id]} {confidence:.2f}"
|
| 67 |
+
for class_id, confidence in zip(detections.class_id, detections.confidence)
|
| 68 |
+
]
|
| 69 |
+
annotated_frame = box_annotator.annotate(frame, detections=detections, labels=labels)
|
| 70 |
+
|
| 71 |
+
writer.write(annotated_frame)
|
| 72 |
+
ret, frame = cap.read()
|
| 73 |
+
|
| 74 |
+
cap.release()
|
| 75 |
+
writer.release()
|
| 76 |
+
|
| 77 |
+
return out_path
|
| 78 |
+
|
| 79 |
def app():
|
| 80 |
with gr.Blocks():
|
| 81 |
with gr.Row():
|
| 82 |
with gr.Column():
|
| 83 |
+
image_or_video = gr.Radio(
|
| 84 |
+
label="Input Type",
|
| 85 |
+
choices=["Image", "Video"],
|
| 86 |
+
value="Image",
|
| 87 |
+
)
|
| 88 |
+
image = gr.Image(type="numpy", label="Image", visible=True)
|
| 89 |
+
video = gr.Video(label="Video", visible=False)
|
| 90 |
+
|
| 91 |
+
image_or_video.change(
|
| 92 |
+
lambda x: (gr.update(visible=x=="Image"), gr.update(visible=x=="Video")),
|
| 93 |
+
inputs=[image_or_video],
|
| 94 |
+
outputs=[image, video],
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
model_id = gr.Dropdown(
|
| 98 |
label="Model",
|
| 99 |
choices=[
|
|
|
|
| 130 |
yolov10_infer = gr.Button(value="Detect Objects")
|
| 131 |
|
| 132 |
with gr.Column():
|
| 133 |
+
output_image = gr.Image(type="numpy", label="Annotated Image", visible=True)
|
| 134 |
+
output_video = gr.Video(label="Annotated Video", visible=False)
|
| 135 |
|
| 136 |
yolov10_infer.click(
|
| 137 |
+
fn=lambda inputs: yolov10_inference(*inputs) if inputs[0] == "Image" else yolov10_video_inference(*inputs[1:]),
|
| 138 |
inputs=[
|
| 139 |
+
image_or_video,
|
| 140 |
image,
|
| 141 |
+
video,
|
| 142 |
model_id,
|
| 143 |
image_size,
|
| 144 |
conf_threshold,
|
| 145 |
iou_threshold,
|
| 146 |
],
|
| 147 |
+
outputs=[output_image, output_video],
|
| 148 |
)
|
| 149 |
|
| 150 |
gr.Examples(
|
| 151 |
examples=[
|
| 152 |
[
|
| 153 |
+
"Image",
|
| 154 |
"Animals_persones.jpg",
|
| 155 |
+
None,
|
| 156 |
"yolov10x.pt",
|
| 157 |
640,
|
| 158 |
0.25,
|
| 159 |
0.45,
|
| 160 |
],
|
| 161 |
[
|
| 162 |
+
"Image",
|
| 163 |
"collage-horses-other-pets-white.jpg",
|
| 164 |
+
None,
|
| 165 |
"yolov10m.pt",
|
| 166 |
640,
|
| 167 |
0.25,
|
| 168 |
0.45,
|
| 169 |
],
|
| 170 |
[
|
| 171 |
+
"Image",
|
| 172 |
"Ville.png",
|
| 173 |
+
None,
|
| 174 |
"yolov10b.pt",
|
| 175 |
640,
|
| 176 |
0.25,
|
| 177 |
0.45,
|
| 178 |
],
|
| 179 |
+
[
|
| 180 |
+
"Video",
|
| 181 |
+
None,
|
| 182 |
+
"sample_video.mp4",
|
| 183 |
+
"yolov10m.pt",
|
| 184 |
+
640,
|
| 185 |
+
0.25,
|
| 186 |
+
0.45,
|
| 187 |
+
],
|
| 188 |
],
|
| 189 |
+
fn=lambda inputs: yolov10_inference(*inputs) if inputs[0] == "Image" else yolov10_video_inference(*inputs[1:]),
|
| 190 |
inputs=[
|
| 191 |
+
image_or_video,
|
| 192 |
image,
|
| 193 |
+
video,
|
| 194 |
model_id,
|
| 195 |
image_size,
|
| 196 |
conf_threshold,
|
| 197 |
iou_threshold,
|
| 198 |
],
|
| 199 |
+
outputs=[output_image, output_video],
|
| 200 |
cache_examples=True,
|
| 201 |
)
|
| 202 |
|
|
|
|
| 219 |
with gr.Column():
|
| 220 |
app()
|
| 221 |
|
| 222 |
+
gradio_app.launch(debug=True)
|