Spaces:
Running
on
Zero
Running
on
Zero
| import pdb | |
| from pathlib import Path | |
| import sys | |
| import os | |
| import onnxruntime as ort | |
| PROJECT_ROOT = Path(__file__).absolute().parents[0].absolute() | |
| sys.path.insert(0, str(PROJECT_ROOT)) | |
| from parsing_api import onnx_inference | |
| import torch | |
| class Parsing: | |
| def __init__(self, model_root, device): | |
| providers = ['CPUExecutionProvider' | |
| ] if device == 'cpu' else ['CUDAExecutionProvider'] | |
| session_options = ort.SessionOptions() | |
| session_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL | |
| session_options.execution_mode = ort.ExecutionMode.ORT_SEQUENTIAL | |
| self.session = ort.InferenceSession(os.path.join(model_root, 'humanparsing/parsing_atr.onnx'), | |
| sess_options=session_options, providers=providers) | |
| self.lip_session = ort.InferenceSession(os.path.join(model_root, 'humanparsing/parsing_lip.onnx'), | |
| sess_options=session_options, providers=providers) | |
| def __call__(self, input_image): | |
| # torch.cuda.set_device(self.gpu_id) | |
| parsed_image, face_mask = onnx_inference(self.session, self.lip_session, input_image) | |
| return parsed_image, face_mask | |