File size: 24,791 Bytes
0397cdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ef04af
 
 
0397cdb
 
 
 
 
 
8ef04af
0397cdb
8ef04af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0397cdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ef04af
 
 
 
 
 
 
 
 
 
 
0397cdb
 
 
 
 
8ef04af
 
 
 
 
 
 
0397cdb
 
 
 
 
 
 
 
 
 
 
8ef04af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0397cdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
from smolagents import Tool
import json
import os
import time
import requests
from typing import Dict, Any
from dotenv import load_dotenv

# Load environment variables from .env if present
load_dotenv()


def _build_description(description_lines):
    """Join multiline descriptions defined as lists."""
    return "\n".join(description_lines)


# Dataset catalogue mirrored from the MCP implementation (JS version).
# Each entry defines the dataset_id, the required inputs, optional defaults,
# and optional fixed values that are injected automatically.
DATASETS: Dict[str, Dict[str, Any]] = {
    "amazon_product": {
        "dataset_id": "gd_l7q7dkf244hwjntr0",
        "description": _build_description(
            [
                "Quickly read structured amazon product data.",
                "Requires a valid product URL with /dp/ in it.",
                "This can be a cache lookup, so it can be more reliable than scraping.",
            ]
        ),
        "inputs": ["url"],
    },
    "amazon_product_reviews": {
        "dataset_id": "gd_le8e811kzy4ggddlq",
        "description": _build_description(
            [
                "Quickly read structured amazon product review data.",
                "Requires a valid product URL with /dp/ in it.",
                "This can be a cache lookup, so it can be more reliable than scraping.",
            ]
        ),
        "inputs": ["url"],
    },
    "amazon_product_search": {
        "dataset_id": "gd_lwdb4vjm1ehb499uxs",
        "description": _build_description(
            [
                "Quickly read structured amazon product search data.",
                "Requires a valid search keyword and amazon domain URL.",
                "This can be a cache lookup, so it can be more reliable than scraping.",
            ]
        ),
        "inputs": ["keyword", "url"],
        "fixed_values": {"pages_to_search": "1"},
    },
    "walmart_product": {
        "dataset_id": "gd_l95fol7l1ru6rlo116",
        "description": _build_description(
            [
                "Quickly read structured walmart product data.",
                "Requires a valid product URL with /ip/ in it.",
                "This can be a cache lookup, so it can be more reliable than scraping.",
            ]
        ),
        "inputs": ["url"],
    },
    "walmart_seller": {
        "dataset_id": "gd_m7ke48w81ocyu4hhz0",
        "description": _build_description(
            [
                "Quickly read structured walmart seller data.",
                "Requires a valid walmart seller URL.",
                "This can be a cache lookup, so it can be more reliable than scraping.",
            ]
        ),
        "inputs": ["url"],
    },
    "ebay_product": {
        "dataset_id": "gd_ltr9mjt81n0zzdk1fb",
        "description": _build_description(
            [
                "Quickly read structured ebay product data.",
                "Requires a valid ebay product URL.",
                "This can be a cache lookup, so it can be more reliable than scraping.",
            ]
        ),
        "inputs": ["url"],
    },
    "homedepot_products": {
        "dataset_id": "gd_lmusivh019i7g97q2n",
        "description": _build_description(
            [
                "Quickly read structured homedepot product data.",
                "Requires a valid homedepot product URL.",
                "This can be a cache lookup, so it can be more reliable than scraping.",
            ]
        ),
        "inputs": ["url"],
    },
    "zara_products": {
        "dataset_id": "gd_lct4vafw1tgx27d4o0",
        "description": _build_description(
            [
                "Quickly read structured zara product data.",
                "Requires a valid zara product URL.",
                "This can be a cache lookup, so it can be more reliable than scraping.",
            ]
        ),
        "inputs": ["url"],
    },
    "etsy_products": {
        "dataset_id": "gd_ltppk0jdv1jqz25mz",
        "description": _build_description(
            [
                "Quickly read structured etsy product data.",
                "Requires a valid etsy product URL.",
                "This can be a cache lookup, so it can be more reliable than scraping.",
            ]
        ),
        "inputs": ["url"],
    },
    "bestbuy_products": {
        "dataset_id": "gd_ltre1jqe1jfr7cccf",
        "description": _build_description(
            [
                "Quickly read structured bestbuy product data.",
                "Requires a valid bestbuy product URL.",
                "This can be a cache lookup, so it can be more reliable than scraping.",
            ]
        ),
        "inputs": ["url"],
    },
    "linkedin_person_profile": {
        "dataset_id": "gd_l1viktl72bvl7bjuj0",
        "description": _build_description(
            [
                "Quickly read structured linkedin people profile data.",
                "This can be a cache lookup, so it can be more reliable than scraping.",
            ]
        ),
        "inputs": ["url"],
    },
    "linkedin_company_profile": {
        "dataset_id": "gd_l1vikfnt1wgvvqz95w",
        "description": _build_description(
            [
                "Quickly read structured linkedin company profile data.",
                "This can be a cache lookup, so it can be more reliable than scraping.",
            ]
        ),
        "inputs": ["url"],
    },
    "linkedin_job_listings": {
        "dataset_id": "gd_lpfll7v5hcqtkxl6l",
        "description": _build_description(
            [
                "Quickly read structured linkedin job listings data.",
                "This can be a cache lookup, so it can be more reliable than scraping.",
            ]
        ),
        "inputs": ["url"],
    },
    "linkedin_posts": {
        "dataset_id": "gd_lyy3tktm25m4avu764",
        "description": _build_description(
            [
                "Quickly read structured linkedin posts data.",
                "This can be a cache lookup, so it can be more reliable than scraping.",
            ]
        ),
        "inputs": ["url"],
    },
    "linkedin_people_search": {
        "dataset_id": "gd_m8d03he47z8nwb5xc",
        "description": _build_description(
            [
                "Quickly read structured linkedin people search data.",
                "This can be a cache lookup, so it can be more reliable than scraping.",
            ]
        ),
        "inputs": ["url", "first_name", "last_name"],
    },
    "crunchbase_company": {
        "dataset_id": "gd_l1vijqt9jfj7olije",
        "description": _build_description(
            [
                "Quickly read structured crunchbase company data.",
                "This can be a cache lookup, so it can be more reliable than scraping.",
            ]
        ),
        "inputs": ["url"],
    },
    "zoominfo_company_profile": {
        "dataset_id": "gd_m0ci4a4ivx3j5l6nx",
        "description": _build_description(
            [
                "Quickly read structured ZoomInfo company profile data.",
                "Requires a valid ZoomInfo company URL.",
                "This can be a cache lookup, so it can be more reliable than scraping.",
            ]
        ),
        "inputs": ["url"],
    },
    "instagram_profiles": {
        "dataset_id": "gd_l1vikfch901nx3by4",
        "description": _build_description(
            [
                "Quickly read structured Instagram profile data.",
                "Requires a valid Instagram URL.",
                "This can be a cache lookup, so it can be more reliable than scraping.",
            ]
        ),
        "inputs": ["url"],
    },
    "instagram_posts": {
        "dataset_id": "gd_lk5ns7kz21pck8jpis",
        "description": _build_description(
            [
                "Quickly read structured Instagram post data.",
                "Requires a valid Instagram URL.",
                "This can be a cache lookup, so it can be more reliable than scraping.",
            ]
        ),
        "inputs": ["url"],
    },
    "instagram_reels": {
        "dataset_id": "gd_lyclm20il4r5helnj",
        "description": _build_description(
            [
                "Quickly read structured Instagram reel data.",
                "Requires a valid Instagram URL.",
                "This can be a cache lookup, so it can be more reliable than scraping.",
            ]
        ),
        "inputs": ["url"],
    },
    "instagram_comments": {
        "dataset_id": "gd_ltppn085pokosxh13",
        "description": _build_description(
            [
                "Quickly read structured Instagram comments data.",
                "Requires a valid Instagram URL.",
                "This can be a cache lookup, so it can be more reliable than scraping.",
            ]
        ),
        "inputs": ["url"],
    },
    "facebook_posts": {
        "dataset_id": "gd_lyclm1571iy3mv57zw",
        "description": _build_description(
            [
                "Quickly read structured Facebook post data.",
                "Requires a valid Facebook post URL.",
                "This can be a cache lookup, so it can be more reliable than scraping.",
            ]
        ),
        "inputs": ["url"],
    },
    "facebook_marketplace_listings": {
        "dataset_id": "gd_lvt9iwuh6fbcwmx1a",
        "description": _build_description(
            [
                "Quickly read structured Facebook marketplace listing data.",
                "Requires a valid Facebook marketplace listing URL.",
                "This can be a cache lookup, so it can be more reliable than scraping.",
            ]
        ),
        "inputs": ["url"],
    },
    "facebook_company_reviews": {
        "dataset_id": "gd_m0dtqpiu1mbcyc2g86",
        "description": _build_description(
            [
                "Quickly read structured Facebook company reviews data.",
                "Requires a valid Facebook company URL and number of reviews.",
                "This can be a cache lookup, so it can be more reliable than scraping.",
            ]
        ),
        "inputs": ["url", "num_of_reviews"],
    },
    "facebook_events": {
        "dataset_id": "gd_m14sd0to1jz48ppm51",
        "description": _build_description(
            [
                "Quickly read structured Facebook events data.",
                "Requires a valid Facebook event URL.",
                "This can be a cache lookup, so it can be more reliable than scraping.",
            ]
        ),
        "inputs": ["url"],
    },
    "tiktok_profiles": {
        "dataset_id": "gd_l1villgoiiidt09ci",
        "description": _build_description(
            [
                "Quickly read structured Tiktok profiles data.",
                "Requires a valid Tiktok profile URL.",
                "This can be a cache lookup, so it can be more reliable than scraping.",
            ]
        ),
        "inputs": ["url"],
    },
    "tiktok_posts": {
        "dataset_id": "gd_lu702nij2f790tmv9h",
        "description": _build_description(
            [
                "Quickly read structured Tiktok post data.",
                "Requires a valid Tiktok post URL.",
                "This can be a cache lookup, so it can be more reliable than scraping.",
            ]
        ),
        "inputs": ["url"],
    },
    "tiktok_shop": {
        "dataset_id": "gd_m45m1u911dsa4274pi",
        "description": _build_description(
            [
                "Quickly read structured Tiktok shop data.",
                "Requires a valid Tiktok shop product URL.",
                "This can be a cache lookup, so it can be more reliable than scraping.",
            ]
        ),
        "inputs": ["url"],
    },
    "tiktok_comments": {
        "dataset_id": "gd_lkf2st302ap89utw5k",
        "description": _build_description(
            [
                "Quickly read structured Tiktok comments data.",
                "Requires a valid Tiktok video URL.",
                "This can be a cache lookup, so it can be more reliable than scraping.",
            ]
        ),
        "inputs": ["url"],
    },
    "google_maps_reviews": {
        "dataset_id": "gd_luzfs1dn2oa0teb81",
        "description": _build_description(
            [
                "Quickly read structured Google maps reviews data.",
                "Requires a valid Google maps URL.",
                "This can be a cache lookup, so it can be more reliable than scraping.",
            ]
        ),
        "inputs": ["url", "days_limit"],
        "defaults": {"days_limit": "3"},
    },
    "google_shopping": {
        "dataset_id": "gd_ltppk50q18kdw67omz",
        "description": _build_description(
            [
                "Quickly read structured Google shopping data.",
                "Requires a valid Google shopping product URL.",
                "This can be a cache lookup, so it can be more reliable than scraping.",
            ]
        ),
        "inputs": ["url"],
    },
    "google_play_store": {
        "dataset_id": "gd_lsk382l8xei8vzm4u",
        "description": _build_description(
            [
                "Quickly read structured Google play store data.",
                "Requires a valid Google play store app URL.",
                "This can be a cache lookup, so it can be more reliable than scraping.",
            ]
        ),
        "inputs": ["url"],
    },
    "apple_app_store": {
        "dataset_id": "gd_lsk9ki3u2iishmwrui",
        "description": _build_description(
            [
                "Quickly read structured apple app store data.",
                "Requires a valid apple app store app URL.",
                "This can be a cache lookup, so it can be more reliable than scraping.",
            ]
        ),
        "inputs": ["url"],
    },
    "reuter_news": {
        "dataset_id": "gd_lyptx9h74wtlvpnfu",
        "description": _build_description(
            [
                "Quickly read structured reuter news data.",
                "Requires a valid reuter news report URL.",
                "This can be a cache lookup, so it can be more reliable than scraping.",
            ]
        ),
        "inputs": ["url"],
    },
    "github_repository_file": {
        "dataset_id": "gd_lyrexgxc24b3d4imjt",
        "description": _build_description(
            [
                "Quickly read structured github repository data.",
                "Requires a valid github repository file URL.",
                "This can be a cache lookup, so it can be more reliable than scraping.",
            ]
        ),
        "inputs": ["url"],
    },
    "yahoo_finance_business": {
        "dataset_id": "gd_lmrpz3vxmz972ghd7",
        "description": _build_description(
            [
                "Quickly read structured yahoo finance business data.",
                "Requires a valid yahoo finance business URL.",
                "This can be a cache lookup, so it can be more reliable than scraping.",
            ]
        ),
        "inputs": ["url"],
    },
    "x_posts": {
        "dataset_id": "gd_lwxkxvnf1cynvib9co",
        "description": _build_description(
            [
                "Quickly read structured X post data.",
                "Requires a valid X post URL.",
                "This can be a cache lookup, so it can be more reliable than scraping.",
            ]
        ),
        "inputs": ["url"],
    },
    "zillow_properties_listing": {
        "dataset_id": "gd_lfqkr8wm13ixtbd8f5",
        "description": _build_description(
            [
                "Quickly read structured zillow properties listing data.",
                "Requires a valid zillow properties listing URL.",
                "This can be a cache lookup, so it can be more reliable than scraping.",
            ]
        ),
        "inputs": ["url"],
    },
    "booking_hotel_listings": {
        "dataset_id": "gd_m5mbdl081229ln6t4a",
        "description": _build_description(
            [
                "Quickly read structured booking hotel listings data.",
                "Requires a valid booking hotel listing URL.",
                "This can be a cache lookup, so it can be more reliable than scraping.",
            ]
        ),
        "inputs": ["url"],
    },
    "youtube_profiles": {
        "dataset_id": "gd_lk538t2k2p1k3oos71",
        "description": _build_description(
            [
                "Quickly read structured youtube profiles data.",
                "Requires a valid youtube profile URL.",
                "This can be a cache lookup, so it can be more reliable than scraping.",
            ]
        ),
        "inputs": ["url"],
    },
    "youtube_comments": {
        "dataset_id": "gd_lk9q0ew71spt1mxywf",
        "description": _build_description(
            [
                "Quickly read structured youtube comments data.",
                "Requires a valid youtube video URL.",
                "This can be a cache lookup, so it can be more reliable than scraping.",
            ]
        ),
        "inputs": ["url", "num_of_comments"],
        "defaults": {"num_of_comments": "10"},
    },
    "reddit_posts": {
        "dataset_id": "gd_lvz8ah06191smkebj4",
        "description": _build_description(
            [
                "Quickly read structured reddit posts data.",
                "Requires a valid reddit post URL.",
                "This can be a cache lookup, so it can be more reliable than scraping.",
            ]
        ),
        "inputs": ["url"],
    },
    "youtube_videos": {
        "dataset_id": "gd_lk56epmy2i5g7lzu0k",
        "description": _build_description(
            [
                "Quickly read structured YouTube videos data.",
                "Requires a valid YouTube video URL.",
                "This can be a cache lookup, so it can be more reliable than scraping.",
            ]
        ),
        "inputs": ["url"],
    },
}


class BrightDataDatasetTool(Tool):
    name = "brightdata_dataset_fetch"
    description = (
        "Trigger a Bright Data dataset collection and poll until the snapshot is ready. "
        "Choose a dataset key (e.g., amazon_product, linkedin_company_profile, google_maps_reviews). "
        "For most datasets, you only need to provide the URL parameter. "
        "For example: brightdata_dataset_fetch(dataset='linkedin_person_profile', url='https://linkedin.com/in/...')"
    )
    inputs = {
        "dataset": {
            "type": "string",
            "description": f"Dataset key. Options: {', '.join(sorted(DATASETS.keys()))}",
        },
        "url": {
            "type": "string",
            "description": "URL for the dataset (required for most datasets)",
            "nullable": True,
        },
        "keyword": {
            "type": "string",
            "description": "Search keyword (for search datasets like amazon_product_search)",
            "nullable": True,
        },
        "first_name": {
            "type": "string",
            "description": "First name (for datasets like linkedin_people_search)",
            "nullable": True,
        },
        "last_name": {
            "type": "string",
            "description": "Last name (for datasets like linkedin_people_search)",
            "nullable": True,
        },
        "days_limit": {
            "type": "string",
            "description": "Days limit (for datasets like google_maps_reviews, default: 3)",
            "nullable": True,
        },
        "num_of_reviews": {
            "type": "string",
            "description": "Number of reviews (for datasets like facebook_company_reviews)",
            "nullable": True,
        },
        "num_of_comments": {
            "type": "string",
            "description": "Number of comments (for datasets like youtube_comments, default: 10)",
            "nullable": True,
        },
    }
    output_type = "string"

    def _prepare_payload(self, dataset_key: str, params: Dict[str, Any]) -> Dict[str, Any]:
        """Validate required fields, apply defaults, and merge fixed values."""
        config = DATASETS[dataset_key]
        payload = {}

        defaults = config.get("defaults", {})
        fixed_values = config.get("fixed_values", {})

        for field in config["inputs"]:
            if field in params:
                payload[field] = params[field]
            elif field in defaults:
                payload[field] = defaults[field]
            else:
                raise ValueError(f"Missing required field '{field}' for dataset '{dataset_key}'")

        # Apply fixed values that should always be sent
        payload.update(fixed_values)
        return payload

    def forward(
        self,
        dataset: str,
        url: str = None,
        keyword: str = None,
        first_name: str = None,
        last_name: str = None,
        days_limit: str = None,
        num_of_reviews: str = None,
        num_of_comments: str = None,
    ) -> str:
        """
        Trigger a dataset run and poll until results are ready.

        Args:
            dataset: The dataset key from DATASETS.
            url: URL for the dataset (required for most datasets).
            keyword: Search keyword (for search datasets).
            first_name: First name (for people search datasets).
            last_name: Last name (for people search datasets).
            days_limit: Days limit (for time-based datasets).
            num_of_reviews: Number of reviews to fetch.
            num_of_comments: Number of comments to fetch.

        Returns:
            JSON string of the snapshot data once ready.
        """
        api_token = os.getenv("BRIGHT_DATA_API_TOKEN")
        if not api_token:
            raise ValueError("BRIGHT_DATA_API_TOKEN not found in environment variables")

        if dataset not in DATASETS:
            raise ValueError(f"Unknown dataset '{dataset}'. Valid options: {', '.join(sorted(DATASETS.keys()))}")

        # Build params dict from provided arguments
        params = {}
        if url is not None:
            params["url"] = url
        if keyword is not None:
            params["keyword"] = keyword
        if first_name is not None:
            params["first_name"] = first_name
        if last_name is not None:
            params["last_name"] = last_name
        if days_limit is not None:
            params["days_limit"] = days_limit
        if num_of_reviews is not None:
            params["num_of_reviews"] = num_of_reviews
        if num_of_comments is not None:
            params["num_of_comments"] = num_of_comments

        payload = self._prepare_payload(dataset, params)
        dataset_id = DATASETS[dataset]["dataset_id"]

        trigger_url = "https://api.brightdata.com/datasets/v3/trigger"
        trigger_headers = {
            "Authorization": f"Bearer {api_token}",
            "Content-Type": "application/json",
        }

        trigger_response = requests.post(
            trigger_url,
            params={"dataset_id": dataset_id, "include_errors": "true"},
            json=[payload],
            headers=trigger_headers,
            timeout=60,
        )
        trigger_response.raise_for_status()
        snapshot_id = trigger_response.json().get("snapshot_id")

        if not snapshot_id:
            raise RuntimeError("No snapshot ID returned from Bright Data.")

        # Poll for completion (up to 10 minutes, matching MCP logic)
        snapshot_url = f"https://api.brightdata.com/datasets/v3/snapshot/{snapshot_id}"
        max_attempts = 600
        attempts = 0

        while attempts < max_attempts:
            try:
                response = requests.get(
                    snapshot_url,
                    params={"format": "json"},
                    headers={"Authorization": f"Bearer {api_token}"},
                    timeout=30,
                )

                # If Bright Data returns an error response we don't want to loop forever
                if response.status_code == 400:
                    response.raise_for_status()

                data = response.json()
                if isinstance(data, list):
                    return json.dumps(data, indent=2)

                status = data.get("status") if isinstance(data, dict) else None
                if status not in {"running", "building"}:
                    return json.dumps(data, indent=2)

                attempts += 1
                time.sleep(1)

            except requests.exceptions.RequestException as exc:
                # Mirror JS logic: tolerate transient failures, but break on 400
                if getattr(getattr(exc, "response", None), "status_code", None) == 400:
                    raise
                attempts += 1
                time.sleep(1)

        raise TimeoutError(f"Timeout waiting for snapshot {snapshot_id} after {max_attempts} seconds")