File size: 18,753 Bytes
98eec6c
 
 
6fd2cde
96ed627
 
98eec6c
 
 
 
 
 
 
 
4f9a62c
98eec6c
4f9a62c
6fd2cde
4f9a62c
98eec6c
 
 
96ed627
 
 
98eec6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
from typing import Any, Optional
from smolagents.tools import Tool
import json
import time
import os
import requests

class BrightDataDatasetTool(Tool):
    name = "brightdata_dataset_fetch"
    description = "Trigger a Bright Data dataset collection and poll until the snapshot is ready. Choose a dataset key (e.g., amazon_product, linkedin_company_profile, google_maps_reviews). For most datasets, you only need to provide the URL parameter. For example: brightdata_dataset_fetch(dataset='linkedin_person_profile', url='https://linkedin.com/in/...')"
    output_type = "string"

    def __init__(self):
        # Keep dataset catalogue on the instance and build the inputs schema dynamically to satisfy tool validation.
        self.datasets = globals().get("DATASETS")
        if not self.datasets:
            import json
            fallback_json = r'{"amazon_product": {"dataset_id": "gd_l7q7dkf244hwjntr0", "description": "Quickly read structured amazon product data.\nRequires a valid product URL with /dp/ in it.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "amazon_product_reviews": {"dataset_id": "gd_le8e811kzy4ggddlq", "description": "Quickly read structured amazon product review data.\nRequires a valid product URL with /dp/ in it.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "amazon_product_search": {"dataset_id": "gd_lwdb4vjm1ehb499uxs", "description": "Quickly read structured amazon product search data.\nRequires a valid search keyword and amazon domain URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["keyword", "url"], "fixed_values": {"pages_to_search": "1"}}, "walmart_product": {"dataset_id": "gd_l95fol7l1ru6rlo116", "description": "Quickly read structured walmart product data.\nRequires a valid product URL with /ip/ in it.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "walmart_seller": {"dataset_id": "gd_m7ke48w81ocyu4hhz0", "description": "Quickly read structured walmart seller data.\nRequires a valid walmart seller URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "ebay_product": {"dataset_id": "gd_ltr9mjt81n0zzdk1fb", "description": "Quickly read structured ebay product data.\nRequires a valid ebay product URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "homedepot_products": {"dataset_id": "gd_lmusivh019i7g97q2n", "description": "Quickly read structured homedepot product data.\nRequires a valid homedepot product URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "zara_products": {"dataset_id": "gd_lct4vafw1tgx27d4o0", "description": "Quickly read structured zara product data.\nRequires a valid zara product URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "etsy_products": {"dataset_id": "gd_ltppk0jdv1jqz25mz", "description": "Quickly read structured etsy product data.\nRequires a valid etsy product URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "bestbuy_products": {"dataset_id": "gd_ltre1jqe1jfr7cccf", "description": "Quickly read structured bestbuy product data.\nRequires a valid bestbuy product URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "linkedin_person_profile": {"dataset_id": "gd_l1viktl72bvl7bjuj0", "description": "Quickly read structured linkedin people profile data.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "linkedin_company_profile": {"dataset_id": "gd_l1vikfnt1wgvvqz95w", "description": "Quickly read structured linkedin company profile data.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "linkedin_job_listings": {"dataset_id": "gd_lpfll7v5hcqtkxl6l", "description": "Quickly read structured linkedin job listings data.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "linkedin_posts": {"dataset_id": "gd_lyy3tktm25m4avu764", "description": "Quickly read structured linkedin posts data.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "linkedin_people_search": {"dataset_id": "gd_m8d03he47z8nwb5xc", "description": "Quickly read structured linkedin people search data.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url", "first_name", "last_name"]}, "crunchbase_company": {"dataset_id": "gd_l1vijqt9jfj7olije", "description": "Quickly read structured crunchbase company data.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "zoominfo_company_profile": {"dataset_id": "gd_m0ci4a4ivx3j5l6nx", "description": "Quickly read structured ZoomInfo company profile data.\nRequires a valid ZoomInfo company URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "instagram_profiles": {"dataset_id": "gd_l1vikfch901nx3by4", "description": "Quickly read structured Instagram profile data.\nRequires a valid Instagram URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "instagram_posts": {"dataset_id": "gd_lk5ns7kz21pck8jpis", "description": "Quickly read structured Instagram post data.\nRequires a valid Instagram URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "instagram_reels": {"dataset_id": "gd_lyclm20il4r5helnj", "description": "Quickly read structured Instagram reel data.\nRequires a valid Instagram URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "instagram_comments": {"dataset_id": "gd_ltppn085pokosxh13", "description": "Quickly read structured Instagram comments data.\nRequires a valid Instagram URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "facebook_posts": {"dataset_id": "gd_lyclm1571iy3mv57zw", "description": "Quickly read structured Facebook post data.\nRequires a valid Facebook post URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "facebook_marketplace_listings": {"dataset_id": "gd_lvt9iwuh6fbcwmx1a", "description": "Quickly read structured Facebook marketplace listing data.\nRequires a valid Facebook marketplace listing URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "facebook_company_reviews": {"dataset_id": "gd_m0dtqpiu1mbcyc2g86", "description": "Quickly read structured Facebook company reviews data.\nRequires a valid Facebook company URL and number of reviews.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url", "num_of_reviews"]}, "facebook_events": {"dataset_id": "gd_m14sd0to1jz48ppm51", "description": "Quickly read structured Facebook events data.\nRequires a valid Facebook event URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "tiktok_profiles": {"dataset_id": "gd_l1villgoiiidt09ci", "description": "Quickly read structured Tiktok profiles data.\nRequires a valid Tiktok profile URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "tiktok_posts": {"dataset_id": "gd_lu702nij2f790tmv9h", "description": "Quickly read structured Tiktok post data.\nRequires a valid Tiktok post URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "tiktok_shop": {"dataset_id": "gd_m45m1u911dsa4274pi", "description": "Quickly read structured Tiktok shop data.\nRequires a valid Tiktok shop product URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "tiktok_comments": {"dataset_id": "gd_lkf2st302ap89utw5k", "description": "Quickly read structured Tiktok comments data.\nRequires a valid Tiktok video URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "google_maps_reviews": {"dataset_id": "gd_luzfs1dn2oa0teb81", "description": "Quickly read structured Google maps reviews data.\nRequires a valid Google maps URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url", "days_limit"], "defaults": {"days_limit": "3"}}, "google_shopping": {"dataset_id": "gd_ltppk50q18kdw67omz", "description": "Quickly read structured Google shopping data.\nRequires a valid Google shopping product URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "google_play_store": {"dataset_id": "gd_lsk382l8xei8vzm4u", "description": "Quickly read structured Google play store data.\nRequires a valid Google play store app URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "apple_app_store": {"dataset_id": "gd_lsk9ki3u2iishmwrui", "description": "Quickly read structured apple app store data.\nRequires a valid apple app store app URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "reuter_news": {"dataset_id": "gd_lyptx9h74wtlvpnfu", "description": "Quickly read structured reuter news data.\nRequires a valid reuter news report URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "github_repository_file": {"dataset_id": "gd_lyrexgxc24b3d4imjt", "description": "Quickly read structured github repository data.\nRequires a valid github repository file URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "yahoo_finance_business": {"dataset_id": "gd_lmrpz3vxmz972ghd7", "description": "Quickly read structured yahoo finance business data.\nRequires a valid yahoo finance business URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "x_posts": {"dataset_id": "gd_lwxkxvnf1cynvib9co", "description": "Quickly read structured X post data.\nRequires a valid X post URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "zillow_properties_listing": {"dataset_id": "gd_lfqkr8wm13ixtbd8f5", "description": "Quickly read structured zillow properties listing data.\nRequires a valid zillow properties listing URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "booking_hotel_listings": {"dataset_id": "gd_m5mbdl081229ln6t4a", "description": "Quickly read structured booking hotel listings data.\nRequires a valid booking hotel listing URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "youtube_profiles": {"dataset_id": "gd_lk538t2k2p1k3oos71", "description": "Quickly read structured youtube profiles data.\nRequires a valid youtube profile URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "youtube_comments": {"dataset_id": "gd_lk9q0ew71spt1mxywf", "description": "Quickly read structured youtube comments data.\nRequires a valid youtube video URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url", "num_of_comments"], "defaults": {"num_of_comments": "10"}}, "reddit_posts": {"dataset_id": "gd_lvz8ah06191smkebj4", "description": "Quickly read structured reddit posts data.\nRequires a valid reddit post URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "youtube_videos": {"dataset_id": "gd_lk56epmy2i5g7lzu0k", "description": "Quickly read structured YouTube videos data.\nRequires a valid YouTube video URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}}'
            self.datasets = json.loads(fallback_json)
        self.inputs = {
            "dataset": {
                "type": "string",
                "description": "Dataset key",
                # Provide choices so UI renders a dropdown instead of a long list.
                "enum": sorted(self.datasets.keys()),
            },
            "url": {
                "type": "string",
                "description": "URL for the dataset (required for most datasets)",
                "nullable": True,
            },
            "keyword": {
                "type": "string",
                "description": "Search keyword (for search datasets like amazon_product_search)",
                "nullable": True,
            },
            "first_name": {
                "type": "string",
                "description": "First name (for datasets like linkedin_people_search)",
                "nullable": True,
            },
            "last_name": {
                "type": "string",
                "description": "Last name (for datasets like linkedin_people_search)",
                "nullable": True,
            },
            "days_limit": {
                "type": "string",
                "description": "Days limit (for datasets like google_maps_reviews, default: 3)",
                "nullable": True,
            },
            "num_of_reviews": {
                "type": "string",
                "description": "Number of reviews (for datasets like facebook_company_reviews)",
                "nullable": True,
            },
            "num_of_comments": {
                "type": "string",
                "description": "Number of comments (for datasets like youtube_comments, default: 10)",
                "nullable": True,
            },
        }
        super().__init__()

    def _prepare_payload(self, dataset_key: str, params):
        """Validate required fields, apply defaults, and merge fixed values."""
        config = self.datasets[dataset_key]
        payload = {}

        defaults = config.get("defaults", {})
        fixed_values = config.get("fixed_values", {})

        for field in config["inputs"]:
            if field in params:
                payload[field] = params[field]
            elif field in defaults:
                payload[field] = defaults[field]
            else:
                raise ValueError(f"Missing required field '{field}' for dataset '{dataset_key}'")

        # Apply fixed values that should always be sent
        payload.update(fixed_values)
        return payload

    def forward(
        self,
        dataset: str,
        url: str = None,
        keyword: str = None,
        first_name: str = None,
        last_name: str = None,
        days_limit: str = None,
        num_of_reviews: str = None,
        num_of_comments: str = None,
    ) -> str:
        """
        Trigger a dataset run and poll until results are ready.

        Args:
            dataset: The dataset key from DATASETS.
            url: URL for the dataset (required for most datasets).
            keyword: Search keyword (for search datasets).
            first_name: First name (for people search datasets).
            last_name: Last name (for people search datasets).
            days_limit: Days limit (for time-based datasets).
            num_of_reviews: Number of reviews to fetch.
            num_of_comments: Number of comments to fetch.

        Returns:
            JSON string of the snapshot data once ready.
        """
        import os
        import json
        import time
        import requests

        api_token = os.getenv("BRIGHT_DATA_API_TOKEN")
        if not api_token:
            raise ValueError("BRIGHT_DATA_API_TOKEN not found in environment variables")

        if dataset not in self.datasets:
            raise ValueError(f"Unknown dataset '{dataset}'. Valid options: {', '.join(sorted(self.datasets.keys()))}")

        # Build params dict from provided arguments
        params = {}
        if url is not None:
            params["url"] = url
        if keyword is not None:
            params["keyword"] = keyword
        if first_name is not None:
            params["first_name"] = first_name
        if last_name is not None:
            params["last_name"] = last_name
        if days_limit is not None:
            params["days_limit"] = days_limit
        if num_of_reviews is not None:
            params["num_of_reviews"] = num_of_reviews
        if num_of_comments is not None:
            params["num_of_comments"] = num_of_comments

        payload = self._prepare_payload(dataset, params)
        dataset_id = self.datasets[dataset]["dataset_id"]

        trigger_url = "https://api.brightdata.com/datasets/v3/trigger"
        trigger_headers = {
            "Authorization": f"Bearer {api_token}",
            "Content-Type": "application/json",
        }

        trigger_response = requests.post(
            trigger_url,
            params={"dataset_id": dataset_id, "include_errors": "true"},
            json=[payload],
            headers=trigger_headers,
            timeout=60,
        )
        trigger_response.raise_for_status()
        snapshot_id = trigger_response.json().get("snapshot_id")

        if not snapshot_id:
            raise RuntimeError("No snapshot ID returned from Bright Data.")

        # Poll for completion (up to 10 minutes, matching MCP logic)
        snapshot_url = f"https://api.brightdata.com/datasets/v3/snapshot/{snapshot_id}"
        max_attempts = 600
        attempts = 0

        while attempts < max_attempts:
            try:
                response = requests.get(
                    snapshot_url,
                    params={"format": "json"},
                    headers={"Authorization": f"Bearer {api_token}"},
                    timeout=30,
                )

                # If Bright Data returns an error response we don't want to loop forever
                if response.status_code == 400:
                    response.raise_for_status()

                data = response.json()
                if isinstance(data, list):
                    return json.dumps(data, indent=2)

                status = data.get("status") if isinstance(data, dict) else None
                if status not in {"running", "building"}:
                    return json.dumps(data, indent=2)

                attempts += 1
                time.sleep(1)

            except requests.exceptions.RequestException as exc:
                # Mirror JS logic: tolerate transient failures, but break on 400
                if getattr(getattr(exc, "response", None), "status_code", None) == 400:
                    raise
                attempts += 1
                time.sleep(1)

        raise TimeoutError(f"Timeout waiting for snapshot {snapshot_id} after {max_attempts} seconds")