File size: 24,972 Bytes
bcba5ba
 
4e729a5
8df8170
665a0db
dc8b2a7
bcba5ba
 
 
665a0db
bcba5ba
 
 
 
 
 
 
 
 
98eec6c
 
 
bcba5ba
98eec6c
 
bcba5ba
 
98eec6c
 
 
96ed627
 
98eec6c
 
 
bcba5ba
98eec6c
 
 
 
bcba5ba
98eec6c
 
 
 
bcba5ba
98eec6c
 
 
 
bcba5ba
98eec6c
 
 
 
bcba5ba
98eec6c
 
 
 
bcba5ba
98eec6c
 
 
 
bcba5ba
98eec6c
 
 
 
 
 
 
 
4e729a5
 
 
 
 
 
 
 
719bd5b
173b4ae
 
 
 
719bd5b
4e729a5
173b4ae
 
719bd5b
 
 
98eec6c
719bd5b
 
 
 
98eec6c
719bd5b
 
 
 
 
 
 
 
 
bcba5ba
719bd5b
bcba5ba
 
 
 
719bd5b
bcba5ba
1711f91
7ee2792
719bd5b
 
bcba5ba
 
 
 
 
 
 
 
 
 
 
 
98eec6c
 
 
 
 
 
 
 
 
 
 
 
 
 
bcba5ba
98eec6c
bcba5ba
 
 
98eec6c
bcba5ba
 
 
 
 
 
 
 
 
 
 
 
 
98eec6c
bcba5ba
 
 
 
98eec6c
 
 
bcba5ba
 
 
 
98eec6c
 
bcba5ba
 
98eec6c
 
bcba5ba
98eec6c
bcba5ba
98eec6c
 
 
 
 
bcba5ba
 
 
 
 
 
98eec6c
bcba5ba
 
b3ecc7a
bcba5ba
 
 
b3ecc7a
bcba5ba
 
 
665a0db
bcba5ba
 
 
 
e487181
4e729a5
173b4ae
 
 
4e729a5
 
 
 
 
 
 
 
 
dc8b2a7
4e729a5
dc8b2a7
4e729a5
 
859566a
 
 
 
 
9220e18
 
859566a
 
9220e18
859566a
 
 
 
92b8ebf
7ee2792
 
 
0a73403
49cd6f4
 
 
 
 
258dbf2
 
 
 
 
 
 
 
 
49cd6f4
92b8ebf
4e729a5
 
 
 
 
 
 
 
 
 
 
 
 
 
0cc79aa
 
 
 
 
dc8b2a7
0cc79aa
 
dc8b2a7
 
 
 
 
d21fa10
 
 
 
 
 
 
 
 
 
 
 
 
dc8b2a7
 
 
 
 
 
 
 
 
0cc79aa
 
bcba5ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
from __future__ import annotations

import ast
import json
import os
import re
import time
from typing import Any, Dict, List, Optional

import requests
from smolagents.tools import Tool


DATASETS_JSON = r'''{"amazon_product": {"dataset_id": "gd_l7q7dkf244hwjntr0", "description": "Quickly read structured amazon product data.\nRequires a valid product URL with /dp/ in it.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "amazon_product_reviews": {"dataset_id": "gd_le8e811kzy4ggddlq", "description": "Quickly read structured amazon product review data.\nRequires a valid product URL with /dp/ in it.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "amazon_product_search": {"dataset_id": "gd_lwdb4vjm1ehb499uxs", "description": "Quickly read structured amazon product search data.\nRequires a valid search keyword and amazon domain URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["keyword", "url"], "fixed_values": {"pages_to_search": "1"}}, "walmart_product": {"dataset_id": "gd_l95fol7l1ru6rlo116", "description": "Quickly read structured walmart product data.\nRequires a valid product URL with /ip/ in it.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "walmart_seller": {"dataset_id": "gd_m7ke48w81ocyu4hhz0", "description": "Quickly read structured walmart seller data.\nRequires a valid walmart seller URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "ebay_product": {"dataset_id": "gd_ltr9mjt81n0zzdk1fb", "description": "Quickly read structured ebay product data.\nRequires a valid ebay product URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "homedepot_products": {"dataset_id": "gd_lmusivh019i7g97q2n", "description": "Quickly read structured homedepot product data.\nRequires a valid homedepot product URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "zara_products": {"dataset_id": "gd_lct4vafw1tgx27d4o0", "description": "Quickly read structured zara product data.\nRequires a valid zara product URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "etsy_products": {"dataset_id": "gd_ltppk0jdv1jqz25mz", "description": "Quickly read structured etsy product data.\nRequires a valid etsy product URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "bestbuy_products": {"dataset_id": "gd_ltre1jqe1jfr7cccf", "description": "Quickly read structured bestbuy product data.\nRequires a valid bestbuy product URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "linkedin_person_profile": {"dataset_id": "gd_l1viktl72bvl7bjuj0", "description": "Quickly read structured linkedin people profile data.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "linkedin_company_profile": {"dataset_id": "gd_l1vikfnt1wgvvqz95w", "description": "Quickly read structured linkedin company profile data.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "linkedin_job_listings": {"dataset_id": "gd_lpfll7v5hcqtkxl6l", "description": "Quickly read structured linkedin job listings data.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "linkedin_posts": {"dataset_id": "gd_lyy3tktm25m4avu764", "description": "Quickly read structured linkedin posts data.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "linkedin_people_search": {"dataset_id": "gd_m8d03he47z8nwb5xc", "description": "Quickly read structured linkedin people search data.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url", "first_name", "last_name"]}, "crunchbase_company": {"dataset_id": "gd_l1vijqt9jfj7olije", "description": "Quickly read structured crunchbase company data.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "zoominfo_company_profile": {"dataset_id": "gd_m0ci4a4ivx3j5l6nx", "description": "Quickly read structured ZoomInfo company profile data.\nRequires a valid ZoomInfo company URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "instagram_profiles": {"dataset_id": "gd_l1vikfch901nx3by4", "description": "Quickly read structured Instagram profile data.\nRequires a valid Instagram URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "instagram_posts": {"dataset_id": "gd_lk5ns7kz21pck8jpis", "description": "Quickly read structured Instagram post data.\nRequires a valid Instagram URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "instagram_reels": {"dataset_id": "gd_lyclm20il4r5helnj", "description": "Quickly read structured Instagram reel data.\nRequires a valid Instagram URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "instagram_comments": {"dataset_id": "gd_ltppn085pokosxh13", "description": "Quickly read structured Instagram comments data.\nRequires a valid Instagram URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "facebook_posts": {"dataset_id": "gd_lyclm1571iy3mv57zw", "description": "Quickly read structured Facebook post data.\nRequires a valid Facebook post URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "facebook_marketplace_listings": {"dataset_id": "gd_lvt9iwuh6fbcwmx1a", "description": "Quickly read structured Facebook marketplace listing data.\nRequires a valid Facebook marketplace listing URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "facebook_company_reviews": {"dataset_id": "gd_m0dtqpiu1mbcyc2g86", "description": "Quickly read structured Facebook company reviews data.\nRequires a valid Facebook company URL and number of reviews.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url", "num_of_reviews"]}, "facebook_events": {"dataset_id": "gd_m14sd0to1jz48ppm51", "description": "Quickly read structured Facebook events data.\nRequires a valid Facebook event URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "tiktok_profiles": {"dataset_id": "gd_l1villgoiiidt09ci", "description": "Quickly read structured Tiktok profiles data.\nRequires a valid Tiktok profile URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "tiktok_posts": {"dataset_id": "gd_lu702nij2f790tmv9h", "description": "Quickly read structured Tiktok post data.\nRequires a valid Tiktok post URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "tiktok_shop": {"dataset_id": "gd_m45m1u911dsa4274pi", "description": "Quickly read structured Tiktok shop data.\nRequires a valid Tiktok shop product URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "tiktok_comments": {"dataset_id": "gd_lkf2st302ap89utw5k", "description": "Quickly read structured Tiktok comments data.\nRequires a valid Tiktok video URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "google_maps_reviews": {"dataset_id": "gd_luzfs1dn2oa0teb81", "description": "Quickly read structured Google maps reviews data.\nRequires a valid Google maps URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url", "days_limit"], "defaults": {"days_limit": "3"}}, "google_shopping": {"dataset_id": "gd_ltppk50q18kdw67omz", "description": "Quickly read structured Google shopping data.\nRequires a valid Google shopping product URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "google_play_store": {"dataset_id": "gd_lsk382l8xei8vzm4u", "description": "Quickly read structured Google play store data.\nRequires a valid Google play store app URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "apple_app_store": {"dataset_id": "gd_lsk9ki3u2iishmwrui", "description": "Quickly read structured apple app store data.\nRequires a valid apple app store app URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "reuter_news": {"dataset_id": "gd_lyptx9h74wtlvpnfu", "description": "Quickly read structured reuter news data.\nRequires a valid reuter news report URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "github_repository_file": {"dataset_id": "gd_lyrexgxc24b3d4imjt", "description": "Quickly read structured github repository data.\nRequires a valid github repository file URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "yahoo_finance_business": {"dataset_id": "gd_lmrpz3vxmz972ghd7", "description": "Quickly read structured yahoo finance business data.\nRequires a valid yahoo finance business URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "x_posts": {"dataset_id": "gd_lwxkxvnf1cynvib9co", "description": "Quickly read structured X post data.\nRequires a valid X post URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "zillow_properties_listing": {"dataset_id": "gd_lfqkr8wm13ixtbd8f5", "description": "Quickly read structured zillow properties listing data.\nRequires a valid zillow properties listing URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "booking_hotel_listings": {"dataset_id": "gd_m5mbdl081229ln6t4a", "description": "Quickly read structured booking hotel listings data.\nRequires a valid booking hotel listing URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "youtube_profiles": {"dataset_id": "gd_lk538t2k2p1k3oos71", "description": "Quickly read structured youtube profiles data.\nRequires a valid youtube profile URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "youtube_comments": {"dataset_id": "gd_lk9q0ew71spt1mxywf", "description": "Quickly read structured youtube comments data.\nRequires a valid youtube video URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url", "num_of_comments"], "defaults": {"num_of_comments": "10"}}, "reddit_posts": {"dataset_id": "gd_lvz8ah06191smkebj4", "description": "Quickly read structured reddit posts data.\nRequires a valid reddit post URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}, "youtube_videos": {"dataset_id": "gd_lk56epmy2i5g7lzu0k", "description": "Quickly read structured YouTube videos data.\nRequires a valid YouTube video URL.\nThis can be a cache lookup, so it can be more reliable than scraping.", "inputs": ["url"]}}'''

DATASETS: Dict[str, Any] = json.loads(DATASETS_JSON)
DATASET_FIELDS: Dict[str, List[str]] = {key: value["inputs"] for key, value in DATASETS.items()}
DATASET_CHOICES = sorted(DATASETS.keys())


class BrightDataDatasetTool(Tool):
    name = "brightdata_dataset_fetch"
    description = "Trigger a Bright Data dataset collection and poll until the snapshot is ready."
    output_type = "string"

    def __init__(self, datasets: Optional[Dict[str, Any]] = None) -> None:
        self.datasets = datasets or DATASETS
        self.inputs = {
            "dataset": {
                "type": "string",
                "description": "Dataset key",
                "enum": sorted(self.datasets.keys()),
            },
            "url": {
                "type": "string",
                "description": "URL for the dataset",
                "nullable": True,
            },
            "keyword": {
                "type": "string",
                "description": "Search keyword",
                "nullable": True,
            },
            "first_name": {
                "type": "string",
                "description": "First name",
                "nullable": True,
            },
            "last_name": {
                "type": "string",
                "description": "Last name",
                "nullable": True,
            },
            "days_limit": {
                "type": "string",
                "description": "Days limit",
                "nullable": True,
            },
            "num_of_reviews": {
                "type": "string",
                "description": "Number of reviews",
                "nullable": True,
            },
            "num_of_comments": {
                "type": "string",
                "description": "Number of comments",
                "nullable": True,
            },
        }
        super().__init__()

    def forward(
        self,
        dataset: str,
            url: Optional[str] = None,
            keyword: Optional[str] = None,
            first_name: Optional[str] = None,
            last_name: Optional[str] = None,
            days_limit: Optional[str] = None,
            num_of_reviews: Optional[str] = None,
            num_of_comments: Optional[str] = None,
        ) -> str:
        try:
            # Debug logging
            import sys
            print(f"[DEBUG forward] Received url parameter: {url!r} (type: {type(url).__name__})", file=sys.stderr)

            url = self._coerce_url_input(url)

            print(f"[DEBUG forward] After coerce: {url!r}", file=sys.stderr)

            api_token = os.getenv("BRIGHT_DATA_API_TOKEN")
            if not api_token:
                raise ValueError("BRIGHT_DATA_API_TOKEN not found in environment variables")

            if dataset not in self.datasets:
                raise ValueError(
                    f"Unknown dataset '{dataset}'. Valid options: {', '.join(sorted(self.datasets.keys()))}"
                )

            params = self._build_params(
                url=url,
                keyword=keyword,
                first_name=first_name,
                last_name=last_name,
                days_limit=days_limit,
                num_of_reviews=num_of_reviews,
                num_of_comments=num_of_comments,
            )

            payload = self._prepare_payload(dataset, params)

            snapshot_id = self._trigger_snapshot(dataset, payload, api_token)
            data = self._poll_snapshot(snapshot_id, api_token)
            return json.dumps(data, indent=2)

        except requests.exceptions.RequestException as exc:
            details = exc.response.text if getattr(exc, "response", None) is not None else ""
            return json.dumps({"error": str(exc), "details": details, "payload": payload, "coerced_url": url})
        except Exception as exc:
            return json.dumps({"error": str(exc)})

    def _build_params(
        self,
        url: Optional[str],
        keyword: Optional[str],
        first_name: Optional[str],
        last_name: Optional[str],
        days_limit: Optional[str],
        num_of_reviews: Optional[str],
        num_of_comments: Optional[str],
    ) -> Dict[str, str]:
        params: Dict[str, str] = {}
        if url is not None:
            params["url"] = url
        if keyword is not None:
            params["keyword"] = keyword
        if first_name is not None:
            params["first_name"] = first_name
        if last_name is not None:
            params["last_name"] = last_name
        if days_limit is not None:
            params["days_limit"] = days_limit
        if num_of_reviews is not None:
            params["num_of_reviews"] = num_of_reviews
        if num_of_comments is not None:
            params["num_of_comments"] = num_of_comments
        return params

    def _prepare_payload(self, dataset_key: str, params: Dict[str, str]) -> Dict[str, str]:
        config = self.datasets[dataset_key]
        payload: Dict[str, str] = {}

        defaults = config.get("defaults", {})
        fixed_values = config.get("fixed_values", {})

        for field in config["inputs"]:
            if field in params:
                payload[field] = params[field]
            elif field in defaults:
                payload[field] = defaults[field]
            else:
                raise ValueError(f"Missing required field '{field}' for dataset '{dataset_key}'")

        payload.update(fixed_values)
        return payload

    def _trigger_snapshot(self, dataset_key: str, payload: Dict[str, str], api_token: str) -> str:
        dataset_id = self.datasets[dataset_key]["dataset_id"]
        trigger_url = "https://api.brightdata.com/datasets/v3/trigger"
        response = requests.post(
            trigger_url,
            params={"dataset_id": dataset_id, "include_errors": "true"},
            json=[payload],
            headers={
                "Authorization": f"Bearer {api_token}",
                "Content-Type": "application/json",
            },
            timeout=60,
        )
        response.raise_for_status()
        snapshot_id = response.json().get("snapshot_id")
        if not snapshot_id:
            raise RuntimeError("No snapshot ID returned from Bright Data.")
        return snapshot_id

    def _poll_snapshot(self, snapshot_id: str, api_token: str) -> Any:
        snapshot_url = f"https://api.brightdata.com/datasets/v3/snapshot/{snapshot_id}"
        max_attempts = 600
        attempts = 0

        while attempts < max_attempts:
            response = requests.get(
                snapshot_url,
                params={"format": "json"},
                headers={"Authorization": f"Bearer {api_token}"},
                timeout=30,
            )

            if response.status_code == 400:
                response.raise_for_status()

            data = response.json()
            if isinstance(data, list):
                return data

            status = data.get("status") if isinstance(data, dict) else None
            if status not in {"running", "building"}:
                return data

            attempts += 1
            time.sleep(1)

        raise TimeoutError(f"Timeout waiting for snapshot {snapshot_id} after {max_attempts} seconds")

    def _coerce_url_input(self, raw: Optional[Any]) -> Optional[str]:
        import sys
        print(f"[DEBUG _coerce_url_input] Input: {raw!r} (type: {type(raw).__name__})", file=sys.stderr)

        if raw is None:
            return None

        if isinstance(raw, str):
            if raw.strip().startswith("{") and "orig_name" in raw:
                parsed = self._parse_file_dict_string(raw)
                if parsed:
                    raw = parsed
                else:
                    return self._extract_url_from_text(raw)
            else:
                return self._extract_url_from_text(raw)

        if isinstance(raw, dict):
            # Check if this is a Gradio FileData with a path to read
            path_value = raw.get("path")
            if isinstance(path_value, str) and os.path.isfile(path_value):
                # Read the file content (smolagents writes URL as file content)
                file_content = self._read_text_file(path_value)
                import sys
                print(f"[DEBUG _coerce_url_input] File content from {path_value}: {file_content!r}", file=sys.stderr)
                if file_content:
                    extracted = self._extract_url_from_text(file_content)
                    print(f"[DEBUG _coerce_url_input] Extracted URL: {extracted!r}", file=sys.stderr)
                    if extracted:
                        return extracted

            # Check for direct url field (common in Gradio FileData from smolagents)
            url_value = raw.get("url")
            if isinstance(url_value, str):
                if url_value.startswith(("http://", "https://")):
                    return url_value
                if url_value.startswith("/gradio_api/file="):
                    # Do not parse HTML/CSS file contents; treat as no URL.
                    return None
                extracted = self._extract_url_from_text(url_value)
                if extracted:
                    return extracted

            # Fallback: check original text name fields if present
            for key in ("orig_name", "name"):
                candidate = raw.get(key)
                if isinstance(candidate, str) and candidate:
                    extracted = self._extract_url_from_text(candidate)
                    if extracted:
                        return extracted

            return None

        return None

    def _ensure_scheme(self, url: str) -> str:
        if url.startswith(("http://", "https://")):
            return url
        return f"https://{url}"

    def _parse_file_dict_string(self, value: str) -> Optional[dict]:
        try:
            parsed = ast.literal_eval(value)
            return parsed if isinstance(parsed, dict) else None
        except (ValueError, SyntaxError):
            return None

    def _read_text_file(self, path: str) -> Optional[str]:
        if not os.path.isfile(path):
            return None
        try:
            with open(path, "r", encoding="utf-8", errors="ignore") as fh:
                return fh.read()
        except OSError:
            return None

    def _extract_url_from_text(self, text: str) -> Optional[str]:
        if not text:
            return None

        # If text looks like HTML, try to extract canonical URL first
        if text.strip().startswith(("<!doctype", "<!DOCTYPE", "<html", "<HTML")):
            # Look for canonical URL in HTML
            canonical_match = re.search(r'<link\s+rel=["\']canonical["\']\s+href=["\'](https?://[^"\']+)["\']', text, re.IGNORECASE)
            if canonical_match:
                return canonical_match.group(1)

            # Look for og:url meta tag
            og_url_match = re.search(r'<meta\s+property=["\']og:url["\']\s+content=["\'](https?://[^"\']+)["\']', text, re.IGNORECASE)
            if og_url_match:
                return og_url_match.group(1)

        # direct http/https - find first URL
        match = re.search(r"(https?://[^\s\"'<>]+)", text)
        if match:
            return match.group(1)

        # domain/path without scheme
        match_domain = re.search(r"\b([A-Za-z0-9.-]+\.[A-Za-z]{2,}(?:/[^\s\"'<>]*)?)", text)
        if match_domain:
            return self._ensure_scheme(match_domain.group(1))

        return None

    def _get_gradio_app_code(self, tool_module_name: str = "tool") -> str:
        choices = sorted(self.datasets.keys())
        dataset_fields = {key: value["inputs"] for key, value in self.datasets.items()}
        return f"""import gradio as gr
import importlib

BrightDataDatasetTool = importlib.import_module("{tool_module_name}").BrightDataDatasetTool
tool = BrightDataDatasetTool()

DATASET_FIELDS = {dataset_fields}
CHOICES = {choices}

def toggle_fields(selected):
    inputs = ["url", "keyword", "first_name", "last_name", "days_limit", "num_of_reviews", "num_of_comments"]
    wanted = set(DATASET_FIELDS.get(selected, []))
    def vis(name):
        return gr.update(visible=name in wanted)
    return tuple(vis(name) for name in inputs)

def run(dataset, url, keyword, first_name, last_name, days_limit, num_of_reviews, num_of_comments):
    return tool(
        dataset=dataset,
        url=url,
        keyword=keyword,
        first_name=first_name,
        last_name=last_name,
        days_limit=days_limit,
        num_of_reviews=num_of_reviews,
        num_of_comments=num_of_comments,
    )

with gr.Blocks() as demo:
    gr.Markdown("### Bright Data dataset fetch")
    dataset = gr.Dropdown(choices=CHOICES, label="Dataset", value=CHOICES[0])
    url = gr.Textbox(label="URL", placeholder="https://...", visible=True)
    keyword = gr.Textbox(label="Keyword", visible=False)
    first_name = gr.Textbox(label="First name", visible=False)
    last_name = gr.Textbox(label="Last name", visible=False)
    days_limit = gr.Textbox(label="Days limit (e.g. 3)", visible=False)
    num_of_reviews = gr.Textbox(label="Number of reviews", visible=False)
    num_of_comments = gr.Textbox(label="Number of comments", visible=False)

    dataset.change(
        toggle_fields,
        inputs=[dataset],
        outputs=[url, keyword, first_name, last_name, days_limit, num_of_reviews, num_of_comments],
    )

    run_btn = gr.Button("Run")
    output = gr.Textbox(label="Output", lines=12)
    run_btn.click(
        run,
        inputs=[dataset, url, keyword, first_name, last_name, days_limit, num_of_reviews, num_of_comments],
        outputs=output,
    )

demo.launch()
"""