Spaces:
Runtime error
Runtime error
| from transformers import MBartForConditionalGeneration, MBart50Tokenizer | |
| import gradio as gr | |
| import train as tr | |
| ''' | |
| # Load the model and tokenizer | |
| model_name = "LocalDoc/mbart_large_qa_azerbaijan" | |
| tokenizer = MBart50Tokenizer.from_pretrained(model_name, src_lang="en_XX", tgt_lang="az_AZ") | |
| model = MBartForConditionalGeneration.from_pretrained(model_name) | |
| ''' | |
| def answer_question(text, question): | |
| # Prepare input text | |
| input_text = f"context: {text} question: {question}" | |
| inputs = tokenizer(input_text, return_tensors="pt", max_length=1024, truncation=False, padding="max_length") | |
| # Generate answer | |
| outputs = model.generate( | |
| input_ids=inputs["input_ids"], | |
| attention_mask=inputs["attention_mask"], | |
| max_length=1024, | |
| num_beams=5, | |
| early_stopping=True | |
| ) | |
| # Decode the answer | |
| answer = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| return answer | |
| demo = gr.Interface( | |
| fn=answer_question, | |
| inputs=["text", "text"], | |
| outputs=["text"] | |
| ) | |
| #demo.launch() | |
| tr.init() |