Spaces:
Runtime error
Runtime error
Commit
·
b3e3f8a
1
Parent(s):
5d11984
gradio
Browse files
app.py
CHANGED
|
@@ -1,29 +1,6 @@
|
|
| 1 |
from transformers import MBartForConditionalGeneration, MBart50Tokenizer
|
| 2 |
import dat
|
| 3 |
-
import
|
| 4 |
-
import platform
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
def setvar():
|
| 9 |
-
if platform.system() == "Windows":
|
| 10 |
-
print("Windows detected. Assigning cache directory to Transformers in AppData \ Local.")
|
| 11 |
-
transformers_cache_directory = os.path.join(os.getenv('LOCALAPPDATA'), 'transformers_cache')
|
| 12 |
-
if not os.path.exists(transformers_cache_directory):
|
| 13 |
-
try:
|
| 14 |
-
os.mkdir(transformers_cache_directory)
|
| 15 |
-
print(f"First launch. Directory '{transformers_cache_directory}' created successfully.")
|
| 16 |
-
except OSError as e:
|
| 17 |
-
print(f"Error creating directory '{transformers_cache_directory}': {e}")
|
| 18 |
-
else:
|
| 19 |
-
print(f"Directory '{transformers_cache_directory}' already exists.")
|
| 20 |
-
os.environ['TRANSFORMERS_CACHE'] = transformers_cache_directory
|
| 21 |
-
print("Environment variable assigned.")
|
| 22 |
-
del transformers_cache_directory
|
| 23 |
-
|
| 24 |
-
else:
|
| 25 |
-
print("Windows not detected. Assignment of Transformers cache directory not necessary.")
|
| 26 |
-
|
| 27 |
|
| 28 |
# Load the model and tokenizer
|
| 29 |
model_name = "LocalDoc/mbart_large_qa_azerbaijan"
|
|
@@ -52,9 +29,11 @@ def answer_question(context, question):
|
|
| 52 |
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 53 |
return answer
|
| 54 |
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
-
|
| 60 |
-
print(answer)
|
|
|
|
| 1 |
from transformers import MBartForConditionalGeneration, MBart50Tokenizer
|
| 2 |
import dat
|
| 3 |
+
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
# Load the model and tokenizer
|
| 6 |
model_name = "LocalDoc/mbart_large_qa_azerbaijan"
|
|
|
|
| 29 |
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 30 |
return answer
|
| 31 |
|
| 32 |
+
demo = gr.Interface(
|
| 33 |
+
fn = answer_question,
|
| 34 |
+
inputs = ['context', 'question'],
|
| 35 |
+
outputs = ['text']
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
|
| 39 |
+
demo.launch()
|
|
|