File size: 28,105 Bytes
3edb646 cc8003c 3edb646 ecde62e 3edb646 cc8003c 3edb646 cc8003c 3edb646 cc8003c 3edb646 ecde62e 3edb646 ea459c0 3edb646 cc8003c 3edb646 ecde62e 3edb646 0a5f93f 3edb646 cc8003c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 |
import sys
import torch
import json
from chemietoolkit import ChemIEToolkit,utils
import cv2
from openai import AzureOpenAI
import numpy as np
from PIL import Image
import json
from get_molecular_agent import process_reaction_image_with_multiple_products_and_text_correctR, process_reaction_image_with_multiple_products_and_text_correctmultiR
from get_reaction_agent import get_reaction_withatoms_correctR
import sys
from rxnim import RxnScribe
import json
import base64
model = ChemIEToolkit(device=torch.device('cpu'))
ckpt_path = "./pix2seq_reaction_full.ckpt"
model1 = RxnScribe(ckpt_path, device=torch.device('cpu'))
device = torch.device('cpu')
import base64
import torch
import json
from PIL import Image
import numpy as np
from openai import AzureOpenAI
import copy
from molnextr.chemistry import _convert_graph_to_smiles
import os
def parse_coref_data_with_fallback(data):
bboxes = data["bboxes"]
corefs = data["corefs"]
paired_indices = set()
# 先处理有 coref 配对的
results = []
for idx1, idx2 in corefs:
smiles_entry = bboxes[idx1] if "smiles" in bboxes[idx1] else bboxes[idx2]
text_entry = bboxes[idx2] if "text" in bboxes[idx2] else bboxes[idx1]
smiles = smiles_entry.get("smiles", "")
bbox= smiles_entry.get("bbox", ())
texts = text_entry.get("text", [])
results.append({
"smiles": smiles,
"texts": texts,
"bbox": bbox
})
# 记录下哪些 SMILES 被配对过了
paired_indices.add(idx1)
paired_indices.add(idx2)
# 处理未配对的 SMILES(补充进来)
for idx, entry in enumerate(bboxes):
if "smiles" in entry and idx not in paired_indices:
results.append({
"smiles": entry["smiles"],
"texts": ["There is no label or failed to detect, please recheck the image again"],
"bbox": entry["bbox"],
})
return results
def parse_coref_data_with_fallback_with_box(data):
bboxes = data["bboxes"]
corefs = data["corefs"]
paired_indices = set()
# 先处理有 coref 配对的
results = []
for idx1, idx2 in corefs:
smiles_entry = bboxes[idx1] if "smiles" in bboxes[idx1] else bboxes[idx2]
text_entry = bboxes[idx2] if "text" in bboxes[idx2] else bboxes[idx1]
smiles = smiles_entry.get("smiles", "")
bboxes = smiles_entry.get("bbox", [])
texts = text_entry.get("text", [])
results.append({
"smiles": smiles,
"texts": texts,
"bbox": bboxes
})
# 记录下哪些 SMILES 被配对过了
paired_indices.add(idx1)
paired_indices.add(idx2)
# 处理未配对的 SMILES(补充进来)
for idx, entry in enumerate(bboxes):
if "smiles" in entry and idx not in paired_indices:
results.append({
"smiles": entry["smiles"],
"texts": ["There is no label or failed to detect, please recheck the image again"],
"bbox": entry["bbox"],
})
return results
############################### MOl
_process_multi_molecular_cache = {}
def get_cached_multi_molecular(image_path: str):
"""
只会对同一个 image_path 真正调用一次
process_reaction_image_with_multiple_products_and_text_correctR
并缓存结果。
"""
image = Image.open(image_path).convert('RGB')
image = np.array(image)
if image_path not in _process_multi_molecular_cache:
##print(f"[get_cached_multi_molecular] Processing image: {image_path}")
_process_multi_molecular_cache[image_path] = (
process_reaction_image_with_multiple_products_and_text_correctmultiR(image_path)
################################model.extract_molecule_corefs_from_figures([image])#############################################################################################
)
##print(f"original output: {model.extract_molecule_corefs_from_figures([image])}")
return _process_multi_molecular_cache[image_path]
# def get_multi_molecular_text_to_correct(image_path: str) -> list:
# '''Returns a list of reactions extracted from the image.'''
# # 打开图像文件
# image = Image.open(image_path).convert('RGB')
# # 将图像作为输入传递给模型
# #coref_results = process_reaction_image_with_multiple_products_and_text_correctR(image_path)
# coref_results = model.extract_molecule_corefs_from_figures([image])
# for item in coref_results:
# for bbox in item.get("bboxes", []):
# for key in ["category", "bbox", "molfile", "symbols", 'atoms', "bonds", 'category_id', 'score', 'corefs',"coords","edges"]: #'atoms'
# bbox.pop(key, None) # 安全地移除键
# data = coref_results[0]
# parsed = parse_coref_data_with_fallback(data)
# #print(f"coref_results:{json.dumps(parsed)}")
# #return json.dumps(parsed)
# return parsed
def get_multi_molecular_text_to_correct(image_path: str) -> list:
"""
GPT-4o 注册的 tool。内部不再直接调用二级 Agent,
而是复用缓存过的结果。
"""
coref_results = copy.deepcopy(get_cached_multi_molecular(image_path))
# 按需删掉不想返回给 LLM 的字段
for item in coref_results:
for bbox in item.get("bboxes", []):
for key in [
"category", "molfile", "symbols",
"atoms", "bonds", "category_id", "score", "corefs",
"coords", "edges"
]:
bbox.pop(key, None)
# 假设 parse_coref_data_with_fallback 需要传入单个 dict
parsed = parse_coref_data_with_fallback(coref_results[0])
##print(f"[get_multi_molecular_text_to_correct] parsed: {json.dumps(parsed)}")
return parsed
def get_multi_molecular_full(image_path: str) -> list:
'''Returns a list of reactions extracted from the image.'''
# 打开图像文件
image = Image.open(image_path).convert('RGB')
# 将图像作为输入传递给模型
#coref_results = process_reaction_image_with_multiple_products_and_text_correctR(image_path)
coref_results = model.extract_molecule_corefs_from_figures([image])
for item in coref_results:
for bbox in item.get("bboxes", []):
for key in ["category", "molfile", "symbols", 'atoms', "bonds", 'category_id', 'score', 'corefs',"coords","edges"]: #'atoms'
bbox.pop(key, None) # 安全地移除键
data = coref_results[0]
parsed = parse_coref_data_with_fallback(data)
##print(f"coref_results:{json.dumps(parsed)}")
#return json.dumps(parsed)
return parsed
#get_multi_molecular_text_to_correct('./acs.joc.2c00176 example 1.png')
_raw_results_cache = {}
def get_cached_raw_results(image_path: str):
"""
调用一次 get_reaction_withatoms_correctR 并缓存结果,
后续复用同一份 raw_results。
"""
if image_path not in _raw_results_cache:
#print(f"[get_cached_raw_results] Processing image: {image_path}")
_raw_results_cache[image_path] = get_reaction_withatoms_correctR(image_path)
###############################_raw_results_cache[image_path]= model1.predict_image_file(image_path, molscribe=True, ocr=True)####################################################################
return _raw_results_cache[image_path]
# ----------------------------------------
# 工具函数:基于 raw_pred 构造精简输出
# ----------------------------------------
def get_reaction_from_raw(raw_pred: dict) -> dict:
"""
Returns a structured dictionary of reactions extracted from the raw prediction,
"""
structured = {}
for section in ['reactants', 'conditions', 'products']:
if section in raw_pred:
structured[section] = []
for item in raw_pred[section]:
if section in ('reactants', 'products'):
structured[section].append({
"smiles": item.get("smiles", ""),
"bbox": item.get("bbox", [])
})
else: # conditions
structured[section].append({
"text": item.get("text", []),
"bbox": item.get("bbox", []),
"smiles": item.get("smiles", [])
})
return structured
# ----------------------------------------
# LLM 工具:get_reaction
# ----------------------------------------
def get_reaction(image_path: str) -> dict:
"""
Returns a structured dictionary of reactions extracted from the image,
"""
# 复用缓存的 raw_results
raw_pred = get_cached_raw_results(image_path)[0]
return get_reaction_from_raw(raw_pred)
def get_reaction_full(image_path: str) -> dict:
'''
Returns a structured dictionary of reactions extracted from the image,
including only reactants, conditions, and products with their smiles, bbox, or text.
'''
image_file = image_path
raw_prediction = model1.predict_image_file(image_file, molscribe=True, ocr=True)
#raw_prediction = get_reaction_withatoms_correctR(image_path)
return raw_prediction
def get_full_reaction(image_path: str) -> dict:
'''
Returns a structured dictionary of reactions extracted from the image,
including reactants, conditions, and products, with their smiles, text, and bbox.
'''
image = Image.open(image_path).convert('RGB')
image_file = image_path
raw_prediction = model1.predict_image_file(image_file, molscribe=True, ocr=True)
####################raw_prediction = get_reaction_withatoms_correctR(image_path)###############################################################################################
for reaction in raw_prediction:
for section in ("reactants", "products", "conditions"):
for entry in reaction.get(section, []):
# 1) 保留 coords 三位小数
coords = entry.get("coords")
if isinstance(coords, list):
entry["coords"] = [
[round(val, 3) for val in point]
for point in coords
]
# 2) 删除不需要的字段
for key in ("molfile", "atoms", "bonds"):
entry.pop(key, None)
#raw_prediction =json.dumps(raw_prediction)
print(f"raw_prediction:{raw_prediction}")
coref_results = model.extract_molecule_corefs_from_figures([image])
for item in coref_results:
for bbox in item.get("bboxes", []):
for key in ["category", "molfile", "symbols", 'atoms', "bonds", 'category_id', 'score', 'corefs',"coords","edges"]: #'atoms'
bbox.pop(key, None) # 安全地移除键
data = coref_results[0]
parsed = parse_coref_data_with_fallback(data)
combined_result = {
"reaction_prediction": raw_prediction, # 是个list
"molecule_coref": parsed # 结构化分子识别结果
}
print(f"combined_result:{combined_result}")
return combined_result
def process_reaction_image_with_product_variant_R_group(image_path: str) -> dict:
"""
输入化学反应图像路径,通过 GPT 模型和 OpenChemIE 提取反应信息并返回整理后的反应数据。
Args:
image_path (str): 图像文件路径。
Returns:
dict: 整理后的反应数据,包括反应物、产物和反应模板。
"""
API_KEY = os.getenv("API_KEY")
AZURE_ENDPOINT = os.getenv("AZURE_ENDPOINT")
client = AzureOpenAI(
api_key=API_KEY,
api_version='2024-06-01',
azure_endpoint=AZURE_ENDPOINT
)
# 加载图像并编码为 Base64
def encode_image(image_path: str):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
base64_image = encode_image(image_path)
# GPT 工具调用配置
tools = [
{
'type': 'function',
'function': {
'name': 'get_multi_molecular_text_to_correct',
'description': 'Extracts the SMILES string and text coref from molecular images.',
'parameters': {
'type': 'object',
'properties': {
'image_path': {
'type': 'string',
'description': 'Path to the reaction image.'
}
},
'required': ['image_path'],
'additionalProperties': False
}
}
},
{
'type': 'function',
'function': {
'name': 'get_reaction',
'description': 'Get a list of reactions from a reaction image. A reaction contains data of the reactants, conditions, and products.',
'parameters': {
'type': 'object',
'properties': {
'image_path': {
'type': 'string',
'description': 'The path to the reaction image.',
},
},
'required': ['image_path'],
'additionalProperties': False,
},
},
},
]
# 提供给 GPT 的消息内容
with open('./prompt/prompt.txt', 'r') as prompt_file:
prompt = prompt_file.read()
messages = [
{'role': 'system', 'content': 'You are a helpful assistant.'},
{
'role': 'user',
'content': [
{'type': 'text', 'text': prompt},
{'type': 'image_url', 'image_url': {'url': f'data:image/png;base64,{base64_image}'}}
]
}
]
# 调用 GPT 接口
response = client.chat.completions.create(
model = 'gpt-4o',
temperature = 0,
response_format={ 'type': 'json_object' },
messages = [
{'role': 'system', 'content': 'You are a helpful assistant.'},
{
'role': 'user',
'content': [
{
'type': 'text',
'text': prompt
},
{
'type': 'image_url',
'image_url': {
'url': f'data:image/png;base64,{base64_image}'
}
}
]},
],
tools = tools)
# Step 1: 工具映射表
TOOL_MAP = {
'get_multi_molecular_text_to_correct': get_multi_molecular_text_to_correct,
'get_reaction': get_reaction
}
# Step 2: 处理多个工具调用
tool_calls = response.choices[0].message.tool_calls
results = []
# 遍历每个工具调用
for tool_call in tool_calls:
tool_name = tool_call.function.name
tool_arguments = tool_call.function.arguments
tool_call_id = tool_call.id
tool_args = json.loads(tool_arguments)
if tool_name in TOOL_MAP:
# 调用工具并获取结果
tool_result = TOOL_MAP[tool_name](image_path)
else:
raise ValueError(f"Unknown tool called: {tool_name}")
# 保存每个工具调用结果
results.append({
'role': 'tool',
'content': json.dumps({
'image_path': image_path,
f'{tool_name}':(tool_result),
}),
'tool_call_id': tool_call_id,
})
#print(f"tool_results:{tool_result}")
# Prepare the chat completion payload
completion_payload = {
'model': 'gpt-4o',
'messages': [
{'role': 'system', 'content': 'You are a helpful assistant.'},
{
'role': 'user',
'content': [
{
'type': 'text',
'text': prompt
},
{
'type': 'image_url',
'image_url': {
'url': f'data:image/png;base64,{base64_image}'
}
}
]
},
response.choices[0].message,
*results
],
}
# Generate new response
response = client.chat.completions.create(
model=completion_payload["model"],
messages=completion_payload["messages"],
response_format={ 'type': 'json_object' },
temperature=0
)
# 获取 GPT 生成的结果
gpt_output = json.loads(response.choices[0].message.content)
print("R_group_agent_output:", gpt_output)
image = Image.open(image_path).convert('RGB')
image_np = np.array(image)
#coref_results = model.extract_molecule_corefs_from_figures([image_np])
#coref_results = process_reaction_image_with_multiple_products_and_text_correctR(image_path)
coref_results =get_cached_multi_molecular(image_path)
# reaction_results = model.extract_reactions_from_figures([image_np])
#reaction_results = get_reaction_withatoms_correctR(image_path)[0]
raw_results = get_cached_raw_results(image_path)
reaction_results = raw_results[0]
reaction = {
"reactants": reaction_results.get('reactants', []),
"conditions": reaction_results.get('conditions', []),
"products": reaction_results.get('products', [])
}
reaction_results = [{"reactions": [reaction]}]
#print(reaction_results)
# 定义更新工具输出的函数
def extract_smiles_details(smiles_data, raw_details):
smiles_details = {}
for smiles in smiles_data:
for detail in raw_details:
for bbox in detail.get('bboxes', []):
if bbox.get('smiles') == smiles:
smiles_details[smiles] = {
'category': bbox.get('category'),
'bbox': bbox.get('bbox'),
'category_id': bbox.get('category_id'),
'score': bbox.get('score'),
'molfile': bbox.get('molfile'),
'atoms': bbox.get('atoms'),
'bonds': bbox.get('bonds'),
}
break
return smiles_details
# 获取结果
smiles_details = extract_smiles_details(gpt_output, coref_results)
#print('smiles_details:', smiles_details)
reactants_array = []
products = []
for reactant in reaction_results[0]['reactions'][0]['reactants']:
if 'smiles' in reactant:
#print(f"SMILES:{reactant['smiles']}")
##print(reactant)
reactants_array.append(reactant['smiles'])
for product in reaction_results[0]['reactions'][0]['products']:
##print(product['smiles'])
##print(product)
products.append(product['smiles'])
# 输出结果
#import p#print
#p#print.p#print(smiles_details)
# 整理反应数据
backed_out = utils.backout_without_coref(reaction_results, coref_results, gpt_output, smiles_details, model.molscribe)
backed_out.sort(key=lambda x: x[2])
extracted_rxns = {}
for reactants, products_, label in backed_out:
extracted_rxns[label] = {'reactants': reactants, 'products': products_}
for item in coref_results:
for bbox in item.get("bboxes", []):
for key in ["category", "molfile", "symbols", 'atoms', "bonds", 'category_id', 'score', 'corefs',"coords","edges"]: #'atoms'
bbox.pop(key, None) # 安全地移除键
data = coref_results[0]
parsed = parse_coref_data_with_fallback(data)
toadd = {
"reaction_template": {
"reactants": reactants_array,
"products": products
},
"reactions": extracted_rxns,
"original_molecule_list": parsed
}
# 按标签排序
sorted_keys = sorted(toadd["reactions"].keys())
toadd["reactions"] = {i: toadd["reactions"][i] for i in sorted_keys}
print(f"str_R_group_agent_output:{toadd}")
return toadd
def process_reaction_image_with_table_R_group(image_path: str) -> dict:
API_KEY = os.getenv("API_KEY")
AZURE_ENDPOINT = os.getenv("AZURE_ENDPOINT")
client = AzureOpenAI(
api_key=API_KEY,
api_version='2024-06-01',
azure_endpoint=AZURE_ENDPOINT
)
# 加载图像并编码为 Base64
def encode_image(image_path: str):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
base64_image = encode_image(image_path)
with open('./prompt/prompt_reaction_withR.txt', 'r') as prompt_file:
prompt = prompt_file.read()
tools = [
{
'type': 'function',
'function': {
'name': 'get_full_reaction',
'description': 'Get a list of reactions from a reaction image. A reaction contains data of the reactants, conditions, and products.',
'parameters': {
'type': 'object',
'properties': {
'image_path': {
'type': 'string',
'description': 'The path to the reaction image.',
},
},
'required': ['image_path'],
'additionalProperties': False,
},
},
},
]
response = client.chat.completions.create(
model = 'gpt-4o',
temperature = 0,
response_format={ 'type': 'json_object' },
messages = [
{'role': 'system', 'content': 'You are a helpful assistant.'},
{
'role': 'user',
'content': [
{
'type': 'text',
'text': prompt
},
{
'type': 'image_url',
'image_url': {
'url': f'data:image/png;base64,{base64_image}'
}
}
]},
],
tools = tools,
)
tool_call = response.choices[0].message.tool_calls[0]
tool_name = tool_call.function.name # 修改此处
tool_arguments = tool_call.function.arguments # 新增此处
tool_call_id = tool_call.id
tool_args = json.loads(tool_arguments)
#image_path = tool_args.get('image_path', image_path) # 使用模型提供的 image_path
if tool_name == 'get_full_reaction':
tool_result = get_full_reaction(image_path)
else:
raise ValueError(f"Unknown tool called: {tool_name}")
#print(tool_result)
# 构建工具调用结果消息
function_call_result_message = {
'role': 'tool',
'content': json.dumps({
'image_path': image_path,
f'{tool_name}':(tool_result),
}),
'tool_call_id': tool_call_id,
}
completion_payload = {
'model': 'gpt-4o',
'messages': [
{'role': 'system', 'content': 'You are a helpful assistant.'},
{
'role': 'user',
'content': [
{
'type': 'text',
'text': prompt
},
{
'type': 'image_url',
'image_url': {
'url': f'data:image/png;base64,{base64_image}'
}
}
]
},
response.choices[0].message,
function_call_result_message,
],
}
# Generate new response
response = client.chat.completions.create(
model=completion_payload["model"],
messages=completion_payload["messages"],
response_format={ 'type': 'json_object' },
temperature=0
)
#print(response)
def replace_symbols_and_generate_smiles(input1, input2):
"""
通用函数,用于将输入2中的symbols替换到输入1中,并生成新的SMILES。
返回的结果保持特定格式,不包含初始的反应数据。
参数:
input1: 包含reactants和products的初始输入数据
input2: 包含不同反应的symbols信息的数据
返回:
一个新的包含每个reaction的字典,包含reaction_id、reactants和products。
"""
reactions_output = {"reactions": []} # 存储最终的反应输出
# 遍历 input2 中的每个 reaction
for reaction in input2['reactions']:
reaction_id = reaction['reaction_id']
# 构建新的 reaction 字典
new_reaction = {"reaction_id": reaction_id, "reactants": [], "conditions":[], "products": [], "additional_info": []}
for j, reactant in enumerate(reaction['reactants']):
original_reactant = input1['reactants'][j] # 对应的 reactant 模板
##print(original_reactant)
new_symbols_reactant = reactant['symbols'] # 替换为reaction中的symbols
new_smiles_reactant, __, __ = _convert_graph_to_smiles(original_reactant['coords'], new_symbols_reactant, original_reactant['edges']) # 生成新的SMILES
new_reactant = {
#"category": original_reactant['category'],
#"bbox": original_reactant['bbox'],
#"category_id": original_reactant['category_id'],
"smiles": new_smiles_reactant,
#"coords": original_reactant['coords'],
"symbols": new_symbols_reactant,
#"edges": original_reactant['edges']
}
new_reaction["reactants"].append(new_reactant)
if 'conditions' in reaction:
new_reaction['conditions'] = reaction['conditions']
# 处理 products 中的每个分子
for k, product in enumerate(reaction['products']):
original_product = input1['products'][k] # 对应的 product 模板
new_symbols_product = product['symbols'] # 替换为reaction中的symbols
new_smiles_product, __, __ = _convert_graph_to_smiles(original_product['coords'], new_symbols_product, original_product['edges']) # 生成新的SMILES
new_product = {
#"category": original_product['category'],
#"bbox": original_product['bbox'],
#"category_id": original_product['category_id'],
"smiles": new_smiles_product,
#"coords": original_product['coords'],
"symbols": new_symbols_product,
#"edges": original_product['edges']
}
new_reaction["products"].append(new_product)
if 'additional_info' in reaction:
new_reaction['additional_info'] = reaction['additional_info']
reactions_output['reactions'].append(new_reaction)
return reactions_output
reaction_preds = tool_result['reaction_prediction']
if isinstance(reaction_preds, str):
# 如果是字符串,就 parse
tool_result_json = json.loads(reaction_preds)
elif isinstance(reaction_preds, (dict, list)):
# 已经是 dict 或 list,直接使用
tool_result_json = reaction_preds
else:
raise TypeError(f"Unexpected tool_result type: {type(reaction_preds)}")
input1 = tool_result_json[0]
input2 = json.loads(response.choices[0].message.content)
updated_input = replace_symbols_and_generate_smiles(input1, input2)
print(f"txt_R_group_agent_output:{updated_input}")
return updated_input |