File size: 8,438 Bytes
3edb646
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
155c7e5
 
 
3edb646
 
b7af339
3edb646
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c722dd
 
3edb646
 
 
 
 
0c722dd
 
3edb646
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c722dd
3edb646
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2804047
3edb646
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import sys
import torch
import json
from chemietoolkit import ChemIEToolkit,utils
import cv2
from openai import AzureOpenAI
import numpy as np
from PIL import Image
import json
from get_molecular_agent import process_reaction_image_with_multiple_products_and_text_correctR
from get_reaction_agent import get_reaction_withatoms_correctR
from get_R_group_sub_agent import process_reaction_image_with_table_R_group, process_reaction_image_with_product_variant_R_group,get_full_reaction,get_multi_molecular_full
import os
import sys
from rxnim import RxnScribe
import json
import base64
model = ChemIEToolkit(device=torch.device('cpu')) 
ckpt_path = "./pix2seq_reaction_full.ckpt"
model1 = RxnScribe(ckpt_path, device=torch.device('cpu'))
device = torch.device('cpu')


def ChemEagle(image_path: str) -> dict:
    """
    输入化学反应图像路径,通过 GPT 模型和 TOOLS 提取反应信息并返回整理后的反应数据。

    Args:
        image_path (str): 图像文件路径。

    Returns:
        dict: 整理后的反应数据,包括反应物、产物和反应模板。
    """
    # 初始化 OpenChemIE 模型和 Azure OpenAI 客户端
    API_KEY = os.getenv("API_KEY")
    AZURE_ENDPOINT = os.getenv("AZURE_ENDPOINT")

    client = AzureOpenAI(
        api_key=API_KEY,
        api_version='2024-06-01',
        azure_endpoint=AZURE_ENDPOINT
    )

    # 加载图像并编码为 Base64
    def encode_image(image_path: str):
        with open(image_path, "rb") as image_file:
            return base64.b64encode(image_file.read()).decode('utf-8')

    base64_image = encode_image(image_path)

    # GPT 工具调用配置
    tools = [
        {
        'type': 'function',
        'function': {
            'name': 'process_reaction_image_with_product_variant_R_group',
            'description': 'get the reaction data of the reaction diagram and get SMILES strings of every detailed reaction in reaction diagram and the set of product variants, and the original molecular list.',
            'parameters': {
                'type': 'object',
                'properties': {
                    'image_path': {
                        'type': 'string',
                        'description': 'The path to the reaction image.',
                    },
                },
                'required': ['image_path'],
                'additionalProperties': False,
            },
        },
            },
            {
        'type': 'function',
        'function': {
            'name': 'process_reaction_image_with_table_R_group',
            'description': 'get the reaction data of the reaction diagram and get SMILES strings of every detailed reaction in reaction diagram and the R-group table',
            'parameters': {
                'type': 'object',
                'properties': {
                    'image_path': {
                        'type': 'string',
                        'description': 'The path to the reaction image.',
                    },
                },
                'required': ['image_path'],
                'additionalProperties': False,
            },
        },
            },
            {
        'type': 'function',
        'function': {
            'name': 'get_full_reaction',
            'description': 'After you carefully check the image, if this is a reaction image that contains only a text-based table and does not involve any R-group replacement, or this is a reaction image does not contain any tables or sets of product variants, then just call this simplified tool.',
            'parameters': {
                'type': 'object',
                'properties': {
                    'image_path': {
                        'type': 'string',
                        'description': 'The path to the reaction image.',
                    },
                },
                'required': ['image_path'],
                'additionalProperties': False,
            },
        },
            },
            {
        'type': 'function',
        'function': {
            'name': 'get_multi_molecular_full',
            'description': 'After you carefully check the image, if this is a single molecule image or a multiple molecules image, then need to call this molecular recognition tool.',
            'parameters': {
                'type': 'object',
                'properties': {
                    'image_path': {
                        'type': 'string',
                        'description': 'The path to the reaction image.',
                    },
                },
                'required': ['image_path'],
                'additionalProperties': False,
            },
        },
            },
    ]

    # 提供给 GPT 的消息内容
    with open('./prompt/prompt_final_simple_version.txt', 'r') as prompt_file:
        prompt = prompt_file.read()
    with open('./prompt/prompt_plan.txt', 'r') as prompt_file:
        prompt_plan = prompt_file.read()
    messages = [
        {'role': 'system', 'content': 'You are a helpful assistant.'},
        {
            'role': 'user',
            'content': [
                {'type': 'text', 'text': prompt_plan},
                {'type': 'image_url', 'image_url': {'url': f'data:image/png;base64,{base64_image}'}},
            ]
        }
    ]

    # 调用 GPT 接口
    response = client.chat.completions.create(
    model = 'gpt-4o',
    temperature = 0,
    response_format={ 'type': 'json_object' },
    messages = [
        {'role': 'system', 'content': 'You are a helpful assistant.'},
        {
            'role': 'user',
            'content': [
                {
                    'type': 'text',
                    'text': prompt_plan
                },
                {
                    'type': 'image_url',
                    'image_url': {
                        'url': f'data:image/png;base64,{base64_image}'
                    }
                }
            ]},
    ],
    tools = tools)
    
# Step 1: 工具映射表
    TOOL_MAP = {
        'process_reaction_image_with_product_variant_R_group': process_reaction_image_with_product_variant_R_group,
        'process_reaction_image_with_table_R_group': process_reaction_image_with_table_R_group,
        'get_full_reaction': get_full_reaction,
        'get_multi_molecular_full': get_multi_molecular_full
    }

    # Step 2: 处理多个工具调用
    tool_calls = response.choices[0].message.tool_calls
    print(f"tool_calls:{tool_calls}")
    results = []

    # 遍历每个工具调用
    for tool_call in tool_calls:
        tool_name = tool_call.function.name
        tool_arguments = tool_call.function.arguments
        tool_call_id = tool_call.id
        
        tool_args = json.loads(tool_arguments)
        
        if tool_name in TOOL_MAP:
            # 调用工具并获取结果
            tool_result = TOOL_MAP[tool_name](image_path)
        else:
            raise ValueError(f"Unknown tool called: {tool_name}")
        
        # 保存每个工具调用结果
        results.append({
            'role': 'tool',
            'content': json.dumps({
                'image_path': image_path,
                f'{tool_name}':(tool_result),
            }),
            'tool_call_id': tool_call_id,
        })


# Prepare the chat completion payload
    completion_payload = {
        'model': 'gpt-4o',
        'messages': [
            {'role': 'system', 'content': 'You are a helpful assistant.'},
            {
                'role': 'user',
                'content': [
                    {
                        'type': 'text',
                        'text': prompt
                    },
                    {
                        'type': 'image_url',
                        'image_url': {
                            'url': f'data:image/png;base64,{base64_image}'
                        }
                    }
                ]
            },
            response.choices[0].message,
            *results
            ],
    }

# Generate new response
    response = client.chat.completions.create(
        model=completion_payload["model"],
        messages=completion_payload["messages"],
        response_format={ 'type': 'json_object' },
        temperature=0
    )


    
    # 获取 GPT 生成的结果
    gpt_output = json.loads(response.choices[0].message.content)
    print(gpt_output)
    return gpt_output

if __name__ == "__main__":
    model = ChemEagle()