|
|
from PIL import Image
|
|
|
import torch
|
|
|
|
|
|
from transformers import AutoProcessor, SiglipVisionModel
|
|
|
from models.projection_models import MLPProjModel, QFormerProjModel
|
|
|
from models.attention_processor import FluxAttnProcessor
|
|
|
|
|
|
|
|
|
class Calligrapher:
|
|
|
def __init__(self, sd_pipe, image_encoder_path, calligrapher_path, device, num_tokens):
|
|
|
self.device = device
|
|
|
self.image_encoder_path = image_encoder_path
|
|
|
self.calligrapher_path = calligrapher_path
|
|
|
self.num_tokens = num_tokens
|
|
|
|
|
|
self.pipe = sd_pipe.to(self.device)
|
|
|
self.set_attn_adapter()
|
|
|
|
|
|
self.image_encoder = SiglipVisionModel.from_pretrained(image_encoder_path).to(self.device, dtype=torch.bfloat16)
|
|
|
self.clip_image_processor = AutoProcessor.from_pretrained(self.image_encoder_path)
|
|
|
self.image_proj_mlp, self.image_proj_qformer = self.init_proj()
|
|
|
|
|
|
self.load_models()
|
|
|
|
|
|
def init_proj(self):
|
|
|
image_proj_mlp = MLPProjModel(
|
|
|
cross_attention_dim=self.pipe.transformer.config.joint_attention_dim,
|
|
|
id_embeddings_dim=1152,
|
|
|
num_tokens=self.num_tokens,
|
|
|
).to(self.device, dtype=torch.bfloat16)
|
|
|
|
|
|
image_proj_qformer = QFormerProjModel(
|
|
|
cross_attention_dim=4096,
|
|
|
id_embeddings_dim=1152,
|
|
|
num_tokens=self.num_tokens,
|
|
|
num_heads=8,
|
|
|
num_query_tokens=32
|
|
|
).to(self.device, dtype=torch.bfloat16)
|
|
|
return image_proj_mlp, image_proj_qformer
|
|
|
|
|
|
def set_attn_adapter(self):
|
|
|
transformer = self.pipe.transformer
|
|
|
attn_procs = {}
|
|
|
for name in transformer.attn_processors.keys():
|
|
|
if name.startswith("transformer_blocks.") or name.startswith("single_transformer_blocks"):
|
|
|
attn_procs[name] = FluxAttnProcessor(
|
|
|
hidden_size=transformer.config.num_attention_heads * transformer.config.attention_head_dim,
|
|
|
cross_attention_dim=transformer.config.joint_attention_dim,
|
|
|
num_tokens=self.num_tokens,
|
|
|
).to(self.device, dtype=torch.bfloat16)
|
|
|
else:
|
|
|
attn_procs[name] = transformer.attn_processors[name]
|
|
|
transformer.set_attn_processor(attn_procs)
|
|
|
|
|
|
def load_models(self):
|
|
|
state_dict = torch.load(self.calligrapher_path, map_location="cpu")
|
|
|
self.image_proj_mlp.load_state_dict(state_dict["image_proj_mlp"], strict=True)
|
|
|
self.image_proj_qformer.load_state_dict(state_dict["image_proj_qformer"], strict=True)
|
|
|
target_layers = torch.nn.ModuleList(self.pipe.transformer.attn_processors.values())
|
|
|
target_layers.load_state_dict(state_dict["attn_adapter"], strict=False)
|
|
|
|
|
|
@torch.inference_mode()
|
|
|
def get_image_embeds(self, pil_image=None, clip_image_embeds=None):
|
|
|
if pil_image is not None:
|
|
|
if isinstance(pil_image, Image.Image):
|
|
|
pil_image = [pil_image]
|
|
|
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
|
|
|
clip_image_embeds = self.image_encoder(
|
|
|
clip_image.to(self.device, dtype=self.image_encoder.dtype)).pooler_output
|
|
|
clip_image_embeds = clip_image_embeds.to(dtype=torch.bfloat16)
|
|
|
else:
|
|
|
clip_image_embeds = clip_image_embeds.to(self.device, dtype=torch.bfloat16)
|
|
|
image_prompt_embeds = self.image_proj_mlp(clip_image_embeds) \
|
|
|
+ self.image_proj_qformer(clip_image_embeds)
|
|
|
return image_prompt_embeds
|
|
|
|
|
|
def set_scale(self, scale):
|
|
|
for attn_processor in self.pipe.transformer.attn_processors.values():
|
|
|
if isinstance(attn_processor, FluxAttnProcessor):
|
|
|
attn_processor.scale = scale
|
|
|
|
|
|
def generate(
|
|
|
self,
|
|
|
image=None,
|
|
|
mask_image=None,
|
|
|
ref_image=None,
|
|
|
clip_image_embeds=None,
|
|
|
prompt=None,
|
|
|
scale=1.0,
|
|
|
seed=None,
|
|
|
num_inference_steps=30,
|
|
|
**kwargs,
|
|
|
):
|
|
|
self.set_scale(scale)
|
|
|
|
|
|
image_prompt_embeds = self.get_image_embeds(
|
|
|
pil_image=ref_image, clip_image_embeds=clip_image_embeds
|
|
|
)
|
|
|
|
|
|
if seed is None:
|
|
|
generator = None
|
|
|
else:
|
|
|
generator = torch.Generator(self.device).manual_seed(seed)
|
|
|
|
|
|
images = self.pipe(
|
|
|
image=image,
|
|
|
mask_image=mask_image,
|
|
|
prompt=prompt,
|
|
|
image_emb=image_prompt_embeds,
|
|
|
num_inference_steps=num_inference_steps,
|
|
|
generator=generator,
|
|
|
**kwargs,
|
|
|
).images
|
|
|
|
|
|
return images
|
|
|
|