Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,17 +1,23 @@
|
|
| 1 |
from gradio import components as gc
|
| 2 |
import gradio as gr
|
|
|
|
| 3 |
|
| 4 |
-
#
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
-
#
|
| 12 |
-
|
|
|
|
| 13 |
|
| 14 |
-
# Create the interface
|
| 15 |
iface = gr.Interface(
|
| 16 |
fn=greet,
|
| 17 |
inputs="text",
|
|
@@ -20,7 +26,9 @@ iface = gr.Interface(
|
|
| 20 |
description="Ask a user for their name and greet them."
|
| 21 |
)
|
| 22 |
|
| 23 |
-
#
|
|
|
|
|
|
|
| 24 |
iface.add_component(sidebar, side="left")
|
| 25 |
|
| 26 |
# Launch the Gradio app
|
|
|
|
| 1 |
from gradio import components as gc
|
| 2 |
import gradio as gr
|
| 3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 4 |
|
| 5 |
+
# Load model and tokenizer
|
| 6 |
+
model_name = "Canstralian/CySec_Known_Exploit_Analyzer"
|
| 7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 8 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 9 |
+
|
| 10 |
+
# Define the function for text input processing
|
| 11 |
+
def greet(text):
|
| 12 |
+
# Tokenize and process the input text
|
| 13 |
+
inputs = tokenizer(text, return_tensors="pt")
|
| 14 |
+
outputs = model(**inputs)
|
| 15 |
|
| 16 |
+
# Extract the label with the highest score
|
| 17 |
+
predicted_label = outputs.logits.argmax().item()
|
| 18 |
+
return f"Greeting, {text}! Predicted label: {predicted_label}"
|
| 19 |
|
| 20 |
+
# Create the interface
|
| 21 |
iface = gr.Interface(
|
| 22 |
fn=greet,
|
| 23 |
inputs="text",
|
|
|
|
| 26 |
description="Ask a user for their name and greet them."
|
| 27 |
)
|
| 28 |
|
| 29 |
+
# Optional: define and add a sidebar if needed
|
| 30 |
+
# Example sidebar component (replace with your intended content)
|
| 31 |
+
sidebar = gr.Textbox(label="Sidebar Info")
|
| 32 |
iface.add_component(sidebar, side="left")
|
| 33 |
|
| 34 |
# Launch the Gradio app
|