Spaces:
Sleeping
Sleeping
menghilangkan fast api hugging face tidak support di app.py
Browse files
README.md
CHANGED
|
@@ -3,9 +3,10 @@ title: HistoryLens
|
|
| 3 |
emoji: 🐢
|
| 4 |
colorFrom: purple
|
| 5 |
colorTo: red
|
| 6 |
-
sdk:
|
|
|
|
| 7 |
app_file: app.py
|
| 8 |
pinned: false
|
| 9 |
license: apache-2.0
|
| 10 |
short_description: Classification Image
|
| 11 |
-
---
|
|
|
|
| 3 |
emoji: 🐢
|
| 4 |
colorFrom: purple
|
| 5 |
colorTo: red
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 5.33.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: apache-2.0
|
| 11 |
short_description: Classification Image
|
| 12 |
+
---
|
app.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
import os
|
| 2 |
-
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
|
| 3 |
-
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
|
| 4 |
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
| 5 |
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
|
| 6 |
|
|
@@ -10,36 +10,12 @@ tf.config.set_visible_devices([], 'GPU')
|
|
| 10 |
import gradio as gr
|
| 11 |
import numpy as np
|
| 12 |
from tensorflow.keras.preprocessing import image
|
| 13 |
-
from
|
| 14 |
-
from fastapi.responses import JSONResponse
|
| 15 |
-
from fastapi.middleware.cors import CORSMiddleware
|
| 16 |
-
from io import BytesIO
|
| 17 |
from PIL import Image
|
| 18 |
-
import logging
|
| 19 |
-
from tensorflow.keras.models import load_model, model_from_json
|
| 20 |
-
from tensorflow.keras import mixed_precision
|
| 21 |
-
from tensorflow.keras.saving import get_custom_objects, register_keras_serializable
|
| 22 |
-
from tensorflow.keras.mixed_precision import Policy
|
| 23 |
|
| 24 |
-
# Import deskripsi dan lokasi
|
| 25 |
from description import description
|
| 26 |
from location import location
|
| 27 |
|
| 28 |
-
# @register_keras_serializable(package="keras")
|
| 29 |
-
# class DTypePolicy(Policy):
|
| 30 |
-
# pass
|
| 31 |
-
|
| 32 |
-
# from tensorflow.keras.saving import get_custom_objects
|
| 33 |
-
# get_custom_objects()["DTypePolicy"] = DTypePolicy
|
| 34 |
-
|
| 35 |
-
# Nonaktifkan GPU (jika tidak digunakan)
|
| 36 |
-
tf.config.set_visible_devices([], 'GPU')
|
| 37 |
-
|
| 38 |
-
# Inisialisasi logger
|
| 39 |
-
# logging.basicConfig(level=logging.INFO)
|
| 40 |
-
# logger = logging.getLogger(__name__)
|
| 41 |
-
|
| 42 |
-
# ========== Fungsi Load Model dari File JSON + H5 ==========
|
| 43 |
def load_model_from_file(json_path, h5_path):
|
| 44 |
with open(json_path, "r") as f:
|
| 45 |
json_config = f.read()
|
|
@@ -47,18 +23,14 @@ def load_model_from_file(json_path, h5_path):
|
|
| 47 |
model.load_weights(h5_path)
|
| 48 |
return model
|
| 49 |
|
| 50 |
-
# ========== Load Model ==========
|
| 51 |
model = load_model_from_file("model.json", "my_model.h5")
|
| 52 |
|
| 53 |
-
|
| 54 |
-
# Daftar label
|
| 55 |
labels = [
|
| 56 |
"Benteng Vredeburg", "Candi Borobudur", "Candi Prambanan", "Gedung Agung Istana Kepresidenan",
|
| 57 |
"Masjid Gedhe Kauman", "Monumen Serangan 1 Maret", "Museum Gunungapi Merapi",
|
| 58 |
"Situs Ratu Boko", "Taman Sari", "Tugu Yogyakarta"
|
| 59 |
]
|
| 60 |
|
| 61 |
-
# Fungsi klasifikasi
|
| 62 |
def classify_image(img):
|
| 63 |
try:
|
| 64 |
img = img.resize((224, 224))
|
|
@@ -96,52 +68,16 @@ def classify_image(img):
|
|
| 96 |
except Exception as e:
|
| 97 |
return "Error", str(e), "-"
|
| 98 |
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
|
|
|
| 108 |
)
|
| 109 |
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
# @app.post("/api/predict")
|
| 113 |
-
# async def predict(file: UploadFile = File(...)):
|
| 114 |
-
# contents = await file.read()
|
| 115 |
-
# img = Image.open(BytesIO(contents)).convert("RGB")
|
| 116 |
-
# label_output, deskripsi, lokasi, akurasi = classify_image(img)
|
| 117 |
-
# return JSONResponse(content={
|
| 118 |
-
# "label_output": label_output,
|
| 119 |
-
# "deskripsi": deskripsi,
|
| 120 |
-
# "lokasi": lokasi,
|
| 121 |
-
# "confidence": akurasi
|
| 122 |
-
# })
|
| 123 |
-
|
| 124 |
-
gradio_app = gr.Interface(
|
| 125 |
-
fn=classify_image,
|
| 126 |
-
inputs=gr.Image(type="pil", label="Upload Gambar"),
|
| 127 |
-
# outputs=["text", "text", "html"],
|
| 128 |
-
outputs=[
|
| 129 |
-
gr.Textbox(label="Output Klasifikasi"),
|
| 130 |
-
gr.Textbox(label="Deskripsi Lengkap", lines=20, max_lines=50),
|
| 131 |
-
gr.HTML(label="Link Lokasi"),
|
| 132 |
-
],
|
| 133 |
-
# flagging_mode="never",
|
| 134 |
-
title="Klasifikasi Gambar",
|
| 135 |
-
description="Upload gambar, sistem akan mengklasifikasikan dan memberikan deskripsi mengenai gambar tersebut."
|
| 136 |
-
)
|
| 137 |
-
|
| 138 |
-
app = gr.mount_gradio_app(app, gradio_app, path="/gradio")
|
| 139 |
-
return app
|
| 140 |
-
|
| 141 |
-
app = create_app()
|
| 142 |
-
|
| 143 |
-
# Run server jika dijalankan langsung
|
| 144 |
-
# if __name__ == "__main__":
|
| 145 |
-
# import uvicorn
|
| 146 |
-
# # app = create_app()
|
| 147 |
-
# uvicorn.run(app, host="127.0.0.1", port=8000)
|
|
|
|
| 1 |
import os
|
| 2 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
|
| 3 |
+
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
|
| 4 |
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
| 5 |
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
|
| 6 |
|
|
|
|
| 10 |
import gradio as gr
|
| 11 |
import numpy as np
|
| 12 |
from tensorflow.keras.preprocessing import image
|
| 13 |
+
from tensorflow.keras.models import model_from_json
|
|
|
|
|
|
|
|
|
|
| 14 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
|
|
|
| 16 |
from description import description
|
| 17 |
from location import location
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
def load_model_from_file(json_path, h5_path):
|
| 20 |
with open(json_path, "r") as f:
|
| 21 |
json_config = f.read()
|
|
|
|
| 23 |
model.load_weights(h5_path)
|
| 24 |
return model
|
| 25 |
|
|
|
|
| 26 |
model = load_model_from_file("model.json", "my_model.h5")
|
| 27 |
|
|
|
|
|
|
|
| 28 |
labels = [
|
| 29 |
"Benteng Vredeburg", "Candi Borobudur", "Candi Prambanan", "Gedung Agung Istana Kepresidenan",
|
| 30 |
"Masjid Gedhe Kauman", "Monumen Serangan 1 Maret", "Museum Gunungapi Merapi",
|
| 31 |
"Situs Ratu Boko", "Taman Sari", "Tugu Yogyakarta"
|
| 32 |
]
|
| 33 |
|
|
|
|
| 34 |
def classify_image(img):
|
| 35 |
try:
|
| 36 |
img = img.resize((224, 224))
|
|
|
|
| 68 |
except Exception as e:
|
| 69 |
return "Error", str(e), "-"
|
| 70 |
|
| 71 |
+
interface = gr.Interface(
|
| 72 |
+
fn=classify_image,
|
| 73 |
+
inputs=gr.Image(type="pil", label="Upload Gambar"),
|
| 74 |
+
outputs=[
|
| 75 |
+
gr.Textbox(label="Output Klasifikasi"),
|
| 76 |
+
gr.Textbox(label="Deskripsi Lengkap", lines=20, max_lines=50),
|
| 77 |
+
gr.HTML(label="Link Lokasi"),
|
| 78 |
+
],
|
| 79 |
+
title="Klasifikasi Gambar",
|
| 80 |
+
description="Upload gambar, sistem akan mengklasifikasikan dan memberikan deskripsi mengenai gambar tersebut."
|
| 81 |
)
|
| 82 |
|
| 83 |
+
interface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|