Spaces:
Runtime error
Runtime error
File size: 36,473 Bytes
bd17f20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 |
# Euia-AducSdr: Uma implementação aberta e funcional da arquitetura ADUC-SDR para geração de vídeo coerente.
# Copyright (C) 4 de Agosto de 2025 Carlos Rodrigues dos Santos
#
# Contato:
# Carlos Rodrigues dos Santos
# carlex22@gmail.com
# Rua Eduardo Carlos Pereira, 4125, B1 Ap32, Curitiba, PR, Brazil, CEP 8102025
#
# Repositórios e Projetos Relacionados:
# GitHub: https://github.com/carlex22/Aduc-sdr
# Hugging Face: https://huggingface.co/spaces/Carlexx/Ltx-SuperTime-60Secondos/
# Hugging Face: https://huggingface.co/spaces/Carlexxx/Novinho/
#
# Este programa é software livre: você pode redistribuí-lo e/ou modificá-lo
# sob os termos da Licença Pública Geral Affero da GNU como publicada pela
# Free Software Foundation, seja a versão 3 da Licença, ou
# (a seu critério) qualquer versão posterior.
#
# Este programa é distribuído na esperança de que seja útil,
# mas SEM QUALQUER GARANTIA; sem mesmo a garantia implícita de
# COMERCIALIZAÇÃO ou ADEQUAÇÃO A UM DETERMINADO FIM. Consulte a
# Licença Pública Geral Affero da GNU para mais detalhes.
#
# Você deve ter recebido uma cópia da Licença Pública Geral Affero da GNU
# junto com este programa. Se não, veja <https://www.gnu.org/licenses/>.
# --- app_demo.py (NOVINHO-6.2: Demo Version) ---
# --- Ato 1: A Convocação da Orquestra (Importações) ---
import gradio as gr
import torch
import os
import yaml
from PIL import Image, ImageOps, ExifTags
import shutil
import gc
import subprocess
import google.generativeai as genai
import numpy as np
import imageio
from pathlib import Path
import huggingface_hub
import json
import time
import spaces
# --- Variável de Controle do Modo Demo ---
# Para habilitar a funcionalidade completa, mude esta variável para True.
# Isso requer que o Space esteja rodando em um hardware de GPU.
ENABLE_MODELS = False
# Importações condicionais que dependem dos modelos
if ENABLE_MODELS:
from inference import create_ltx_video_pipeline, load_image_to_tensor_with_resize_and_crop, ConditioningItem, calculate_padding
from dreamo_helpers import dreamo_generator_singleton
else:
# Definimos placeholders para que o resto do código não falhe na importação
ConditioningItem = dict
# --- Ato 2: A Preparação do Palco (Configurações Condicionais) ---
if ENABLE_MODELS:
config_file_path = "configs/ltxv-13b-0.9.8-distilled.yaml"
with open(config_file_path, "r") as file: PIPELINE_CONFIG_YAML = yaml.safe_load(file)
LTX_REPO = "Lightricks/LTX-Video"
models_dir = "downloaded_models_gradio"
Path(models_dir).mkdir(parents=True, exist_ok=True)
print("MODO COMPLETO ATIVADO: Carregando pipelines LTX na CPU (estado de repouso)...")
distilled_model_actual_path = huggingface_hub.hf_hub_download(repo_id=LTX_REPO, filename=PIPELINE_CONFIG_YAML["checkpoint_path"], local_dir=models_dir, local_dir_use_symlinks=False)
pipeline_instance = create_ltx_video_pipeline(
ckpt_path=distilled_model_actual_path,
precision=PIPELINE_CONFIG_YAML["precision"],
text_encoder_model_name_or_path=PIPELINE_CONFIG_YAML["text_encoder_model_name_or_path"],
sampler=PIPELINE_CONFIG_YAML["sampler"],
device='cpu'
)
print("Modelos LTX prontos (na CPU).")
else:
# Em modo demo, definimos as variáveis dos modelos como None para evitar erros.
pipeline_instance = None
dreamo_generator_singleton = None
PIPELINE_CONFIG_YAML = {}
print("MODO DEMO ATIVADO: Carregamento de modelos pesados ignorado.")
WORKSPACE_DIR = "aduc_workspace"
GEMINI_API_KEY = os.environ.get("GEMINI_API_KEY")
VIDEO_FPS = 24
TARGET_RESOLUTION = 420
# --- Ato 3: As Partituras dos Músicos (Funções de Geração e Análise) ---
def robust_json_parser(raw_text: str) -> dict:
try:
start_index = raw_text.find('{'); end_index = raw_text.rfind('}')
if start_index != -1 and end_index != -1 and end_index > start_index:
json_str = raw_text[start_index : end_index + 1]; return json.loads(json_str)
else: raise ValueError("Nenhum objeto JSON válido encontrado na resposta da IA.")
except json.JSONDecodeError as e: raise ValueError(f"Falha ao decodificar JSON: {e}")
def extract_image_exif(image_path: str) -> str:
try:
img = Image.open(image_path); exif_data = img._getexif()
if not exif_data: return "No EXIF metadata found."
exif = { ExifTags.TAGS[k]: v for k, v in exif_data.items() if k in ExifTags.TAGS }
relevant_tags = ['DateTimeOriginal', 'Model', 'LensModel', 'FNumber', 'ExposureTime', 'ISOSpeedRatings', 'FocalLength']
metadata_str = ", ".join(f"{key}: {exif[key]}" for key in relevant_tags if key in exif)
return metadata_str if metadata_str else "No relevant EXIF metadata found."
except Exception: return "Could not read EXIF data."
def run_storyboard_generation(num_fragments: int, prompt: str, initial_image_path: str):
if not initial_image_path: raise gr.Error("Por favor, forneça uma imagem de referência inicial.")
if not GEMINI_API_KEY: raise gr.Error("Chave da API Gemini não configurada! Esta função requer uma chave, mesmo em modo demo.")
exif_metadata = extract_image_exif(initial_image_path)
prompt_file = "prompts/unified_storyboard_prompt.txt"
with open(os.path.join(os.path.dirname(__file__), prompt_file), "r", encoding="utf-8") as f: template = f.read()
director_prompt = template.format(user_prompt=prompt, num_fragments=int(num_fragments), image_metadata=exif_metadata)
genai.configure(api_key=GEMINI_API_KEY)
model = genai.GenerativeModel('gemini-1.5-flash'); img = Image.open(initial_image_path)
print("Gerando roteiro com análise de visão integrada...")
response = model.generate_content([director_prompt, img])
try:
storyboard_data = robust_json_parser(response.text)
storyboard = storyboard_data.get("scene_storyboard", [])
if not storyboard or len(storyboard) != int(num_fragments): raise ValueError(f"A IA não gerou o número correto de cenas. Esperado: {num_fragments}, Recebido: {len(storyboard)}")
return storyboard
except Exception as e: raise gr.Error(f"O Roteirista (Gemini) falhou ao criar o roteiro: {e}. Resposta recebida: {response.text}")
def get_dreamo_prompt_for_transition(previous_image_path: str, target_scene_description: str) -> str:
if not GEMINI_API_KEY: raise gr.Error("Chave da API Gemini não configurada!")
genai.configure(api_key=GEMINI_API_KEY)
prompt_file = "prompts/img2img_evolution_prompt.txt"
with open(os.path.join(os.path.dirname(__file__), prompt_file), "r", encoding="utf-8") as f: template = f.read()
director_prompt = template.format(target_scene_description=target_scene_description)
model = genai.GenerativeModel('gemini-1.5-flash'); img = Image.open(previous_image_path)
response = model.generate_content([director_prompt, "Previous Image:", img])
return response.text.strip().replace("\"", "")
@spaces.GPU(duration=180)
def run_keyframe_generation(storyboard, ref_images_tasks, progress=gr.Progress()):
if not ENABLE_MODELS or dreamo_generator_singleton is None:
raise gr.Error("Modo Demo Ativado! Para gerar imagens, clone este Space, mude a variável 'ENABLE_MODELS' para True no arquivo app.py e use hardware de GPU.")
if not storyboard: raise gr.Error("Nenhum roteiro para gerar keyframes.")
initial_ref_image_path = ref_images_tasks[0]['image']
if not initial_ref_image_path or not os.path.exists(initial_ref_image_path): raise gr.Error("A imagem de referência principal (à esquerda) é obrigatória.")
log_history = ""; generated_images_for_gallery = []
try:
dreamo_generator_singleton.to_gpu()
with Image.open(initial_ref_image_path) as img: width, height = (img.width // 32) * 32, (img.height // 32) * 32
keyframe_paths, current_ref_image_path = [initial_ref_image_path], initial_ref_image_path
for i, scene_description in enumerate(storyboard):
progress(i / len(storyboard), desc=f"Pintando Keyframe {i+1}/{len(storyboard)}")
log_history += f"\n--- PINTANDO KEYFRAME {i+1}/{len(storyboard)} ---\n"
dreamo_prompt = get_dreamo_prompt_for_transition(current_ref_image_path, scene_description)
reference_items = []
fixed_references_basenames = [os.path.basename(item['image']) for item in ref_images_tasks if item['image']]
for item in ref_images_tasks:
if item['image']:
reference_items.append({'image_np': np.array(Image.open(item['image']).convert("RGB")), 'task': item['task']})
dynamic_references_paths = keyframe_paths[-3:]
for ref_path in dynamic_references_paths:
if os.path.basename(ref_path) not in fixed_references_basenames:
reference_items.append({'image_np': np.array(Image.open(ref_path).convert("RGB")), 'task': 'ip'})
log_history += f" - Roteiro: '{scene_description}'\n - Usando {len(reference_items)} referências visuais.\n - Prompt do D.A.: \"{dreamo_prompt}\"\n"
yield {keyframe_log_output: gr.update(value=log_history), keyframe_gallery_output: gr.update(value=generated_images_for_gallery)}
output_path = os.path.join(WORKSPACE_DIR, f"keyframe_{i+1}.png")
image = dreamo_generator_singleton.generate_image_with_gpu_management(reference_items=reference_items, prompt=dreamo_prompt, width=width, height=height)
image.save(output_path)
keyframe_paths.append(output_path); generated_images_for_gallery.append(output_path); current_ref_image_path = output_path
yield {keyframe_log_output: gr.update(value=log_history), keyframe_gallery_output: gr.update(value=generated_images_for_gallery)}
except Exception as e: raise gr.Error(f"O Pintor (DreamO) ou Diretor de Arte (Gemini) falhou: {e}")
finally:
if ENABLE_MODELS:
dreamo_generator_singleton.to_cpu()
gc.collect()
torch.cuda.empty_cache()
log_history += "\nPintura de todos os keyframes concluída.\n"
yield {keyframe_log_output: gr.update(value=log_history), keyframe_gallery_output: gr.update(value=generated_images_for_gallery), keyframe_images_state: keyframe_paths}
def get_initial_motion_prompt(user_prompt: str, start_image_path: str, destination_image_path: str, dest_scene_desc: str):
if not GEMINI_API_KEY: raise gr.Error("Chave da API Gemini não configurada!")
try:
genai.configure(api_key=GEMINI_API_KEY); model = genai.GenerativeModel('gemini-1.5-flash'); prompt_file = "prompts/initial_motion_prompt.txt"
with open(os.path.join(os.path.dirname(__file__), prompt_file), "r", encoding="utf-8") as f: template = f.read()
cinematographer_prompt = template.format(user_prompt=user_prompt, destination_scene_description=dest_scene_desc)
start_img, dest_img = Image.open(start_image_path), Image.open(destination_image_path)
model_contents = ["START Image:", start_img, "DESTINATION Image:", dest_img, cinematographer_prompt]
response = model.generate_content(model_contents)
return response.text.strip()
except Exception as e: raise gr.Error(f"O Cineasta de IA (Inicial) falhou: {e}. Resposta: {getattr(e, 'text', 'No text available.')}")
def get_dynamic_motion_prompt(user_prompt, story_history, memory_media_path, path_image_path, destination_image_path, path_scene_desc, dest_scene_desc):
if not GEMINI_API_KEY: raise gr.Error("Chave da API Gemini não configurada!")
try:
genai.configure(api_key=GEMINI_API_KEY); model = genai.GenerativeModel('gemini-1.5-flash'); prompt_file = "prompts/dynamic_motion_prompt.txt"
with open(os.path.join(os.path.dirname(__file__), prompt_file), "r", encoding="utf-8") as f: template = f.read()
cinematographer_prompt = template.format(user_prompt=user_prompt, story_history=story_history, midpoint_scene_description=path_scene_desc, destination_scene_description=dest_scene_desc)
with imageio.get_reader(memory_media_path) as reader:
mem_img = Image.fromarray(reader.get_data(0))
path_img, dest_img = Image.open(path_image_path), Image.open(destination_image_path)
model_contents = ["START Image (from Kinetic Echo):", mem_img, "MIDPOINT Image (Path):", path_img, "DESTINATION Image (Destination):", dest_img, cinematographer_prompt]
response = model.generate_content(model_contents)
return response.text.strip()
except Exception as e: raise gr.Error(f"O Cineasta de IA (Dinâmico) falhou: {e}. Resposta: {getattr(e, 'text', 'No text available.')}")
@spaces.GPU(duration=360)
def run_video_production(
video_duration_seconds, video_fps, eco_video_frames, use_attention_slicing,
fragment_duration_frames, mid_cond_strength, num_inference_steps,
prompt_geral, keyframe_images_state, scene_storyboard, cfg,
progress=gr.Progress()
):
if not ENABLE_MODELS or pipeline_instance is None:
raise gr.Error("Modo Demo Ativado! Para gerar vídeos, clone este Space, mude a variável 'ENABLE_MODELS' para True no arquivo app.py e use hardware de GPU.")
video_total_frames = int(video_duration_seconds * video_fps)
if not keyframe_images_state or len(keyframe_images_state) < 3: raise gr.Error("Pinte pelo menos 2 keyframes para produzir uma transição.")
if int(fragment_duration_frames) > video_total_frames:
raise gr.Error(f"A 'Duração de Cada Fragmento' ({fragment_duration_frames} frames) não pode ser maior que a 'Duração da Geração Bruta' ({video_total_frames} frames).")
log_history = "\n--- FASE 3/4: Iniciando Produção (Eco + Déjà Vu)...\n"
yield {
production_log_output: log_history, video_gallery_glitch: [],
prod_media_start_output: gr.update(value=None),
prod_media_mid_output: gr.update(value=None, visible=False),
prod_media_end_output: gr.update(value=None),
}
seed = int(time.time())
target_device = 'cuda' if torch.cuda.is_available() else 'cpu'
try:
pipeline_instance.to(target_device)
video_fragments, story_history = [], ""; kinetic_memory_path = None
with Image.open(keyframe_images_state[1]) as img: width, height = img.size
num_transitions = len(keyframe_images_state) - 2
for i in range(num_transitions):
fragment_num = i + 1
progress(i / num_transitions, desc=f"Preparando Fragmento {fragment_num}...")
log_history += f"\n--- FRAGMENTO {fragment_num}/{num_transitions} ---\n"
if i == 0:
start_path, destination_path = keyframe_images_state[1], keyframe_images_state[2]
dest_scene_desc = scene_storyboard[1]
log_history += f" - Início (Big Bang): {os.path.basename(start_path)}\n - Destino: {os.path.basename(destination_path)}\n"
current_motion_prompt = get_initial_motion_prompt(prompt_geral, start_path, destination_path, dest_scene_desc)
conditioning_items_data = [(start_path, 0, 1.0), (destination_path, int(video_total_frames), 1.0)]
yield {
production_log_output: gr.update(value=log_history),
prod_media_start_output: gr.update(value=start_path),
prod_media_mid_output: gr.update(value=None, visible=False),
prod_media_end_output: gr.update(value=destination_path),
}
else:
memory_path, path_path, destination_path = kinetic_memory_path, keyframe_images_state[i+1], keyframe_images_state[i+2]
path_scene_desc, dest_scene_desc = scene_storyboard[i], scene_storyboard[i+1]
log_history += f" - Memória Cinética (Vídeo): {os.path.basename(memory_path)}\n - Caminho: {os.path.basename(path_path)}\n - Destino: {os.path.basename(destination_path)}\n"
mid_cond_frame_calculated = int(video_total_frames - fragment_duration_frames + eco_video_frames)
log_history += f" - Frame de Condicionamento do 'Caminho' calculado: {mid_cond_frame_calculated}\n"
current_motion_prompt = get_dynamic_motion_prompt(prompt_geral, story_history, memory_path, path_path, destination_path, path_scene_desc, dest_scene_desc)
conditioning_items_data = [(memory_path, 0, 1.0), (path_path, mid_cond_frame_calculated, mid_cond_strength), (destination_path, int(video_total_frames), 1.0)]
yield {
production_log_output: gr.update(value=log_history),
prod_media_start_output: gr.update(value=memory_path),
prod_media_mid_output: gr.update(value=path_path, visible=True),
prod_media_end_output: gr.update(value=destination_path),
}
story_history += f"\n- Ato {fragment_num + 1}: {current_motion_prompt}"
log_history += f" - Instrução do Cineasta: '{current_motion_prompt}'\n"; yield {production_log_output: log_history}
progress(i / num_transitions, desc=f"Filmando Fragmento {fragment_num}...")
full_fragment_path, actual_frames_generated = run_ltx_animation(
current_fragment_index=fragment_num, motion_prompt=current_motion_prompt,
conditioning_items_data=conditioning_items_data, width=width, height=height,
seed=seed, cfg=cfg, progress=progress,
video_total_frames=video_total_frames, video_fps=video_fps,
use_attention_slicing=use_attention_slicing, num_inference_steps=num_inference_steps
)
log_history += f" - LOG: Gerei o fragmento_{fragment_num} bruto com {actual_frames_generated} frames.\n"
yield {production_log_output: log_history}
trimmed_fragment_path = os.path.join(WORKSPACE_DIR, f"fragment_{fragment_num}_trimmed.mp4")
trim_video_to_frames(full_fragment_path, trimmed_fragment_path, int(fragment_duration_frames))
log_history += f" - LOG: Reduzi o fragmento_{fragment_num} para {int(fragment_duration_frames)} frames.\n"
yield {production_log_output: log_history}
is_last_fragment = (i == num_transitions - 1)
if not is_last_fragment:
eco_output_path = os.path.join(WORKSPACE_DIR, f"eco_from_frag_{fragment_num}.mp4")
kinetic_memory_path = extract_last_n_frames_as_video(trimmed_fragment_path, eco_output_path, int(eco_video_frames))
log_history += f" - LOG: Gerei o eco com {int(eco_video_frames)} frames a partir do final do fragmento reduzido.\n"
log_history += f" - Novo Eco Cinético (Vídeo) criado: {os.path.basename(kinetic_memory_path)}\n"
else:
log_history += f" - Este é o último fragmento, não é necessário gerar um eco.\n"
video_fragments.append(trimmed_fragment_path)
yield {production_log_output: log_history, video_gallery_glitch: video_fragments}
progress(1.0, desc="Produção Concluída.")
log_history += "\nProdução de todos os fragmentos concluída.\n"
yield {production_log_output: log_history, video_gallery_glitch: video_fragments, fragment_list_state: video_fragments}
finally:
if ENABLE_MODELS:
pipeline_instance.to('cpu')
gc.collect()
torch.cuda.empty_cache()
def process_image_to_square(image_path: str, size: int = TARGET_RESOLUTION) -> str:
if not image_path: return None
try:
img = Image.open(image_path).convert("RGB"); img_square = ImageOps.fit(img, (size, size), Image.Resampling.LANCZOS)
output_path = os.path.join(WORKSPACE_DIR, f"initial_ref_{size}x{size}.png"); img_square.save(output_path)
return output_path
except Exception as e: raise gr.Error(f"Falha ao processar a imagem de referência: {e}")
def load_conditioning_tensor(media_path: str, height: int, width: int) -> torch.Tensor:
if not ENABLE_MODELS: return None
if media_path.lower().endswith(('.mp4', '.mov', '.avi')):
with imageio.get_reader(media_path) as reader:
first_frame_np = reader.get_data(0)
temp_img_path = os.path.join(WORKSPACE_DIR, f"temp_frame_from_{os.path.basename(media_path)}.png")
Image.fromarray(first_frame_np).save(temp_img_path)
return load_image_to_tensor_with_resize_and_crop(temp_img_path, height, width)
else:
return load_image_to_tensor_with_resize_and_crop(media_path, height, width)
def run_ltx_animation(
current_fragment_index, motion_prompt, conditioning_items_data,
width, height, seed, cfg, progress,
video_total_frames, video_fps, use_attention_slicing, num_inference_steps
):
if not ENABLE_MODELS: return None, 0
progress(0, desc=f"[Câmera LTX] Filmando Cena {current_fragment_index}...");
output_path = os.path.join(WORKSPACE_DIR, f"fragment_{current_fragment_index}_full.mp4")
target_device = pipeline_instance.device
try:
if use_attention_slicing: pipeline_instance.enable_attention_slicing()
conditioning_items = [ConditioningItem(load_conditioning_tensor(p, height, width).to(target_device), s, t) for p, s, t in conditioning_items_data]
actual_num_frames = int(round((float(video_total_frames) - 1.0) / 8.0) * 8 + 1)
padded_h, padded_w = ((height - 1) // 32 + 1) * 32, ((width - 1) // 32 + 1) * 32
padding_vals = calculate_padding(height, width, padded_h, padded_w)
for item in conditioning_items: item.media_item = torch.nn.functional.pad(item.media_item, padding_vals)
first_pass_config = PIPELINE_CONFIG_YAML.get("first_pass", {}).copy()
first_pass_config['num_inference_steps'] = int(num_inference_steps)
kwargs = {"prompt": motion_prompt, "negative_prompt": "blurry, distorted, bad quality, artifacts", "height": padded_h, "width": padded_w, "num_frames": actual_num_frames, "frame_rate": video_fps, "generator": torch.Generator(device=target_device).manual_seed(int(seed) + current_fragment_index), "output_type": "pt", "guidance_scale": float(cfg), "timesteps": first_pass_config.get("timesteps"), "conditioning_items": conditioning_items, "decode_timestep": PIPELINE_CONFIG_YAML.get("decode_timestep"), "decode_noise_scale": PIPELINE_CONFIG_YAML.get("decode_noise_scale"), "stochastic_sampling": PIPELINE_CONFIG_YAML.get("stochastic_sampling"), "image_cond_noise_scale": 0.15, "is_video": True, "vae_per_channel_normalize": True, "mixed_precision": (PIPELINE_CONFIG_YAML.get("precision") == "mixed_precision"), "enhance_prompt": False, "decode_every": 4, "num_inference_steps": int(num_inference_steps)}
result_tensor = pipeline_instance(**kwargs).images
pad_l, pad_r, pad_t, pad_b = map(int, padding_vals); slice_h = -pad_b if pad_b > 0 else None; slice_w = -pad_r if pad_r > 0 else None
cropped_tensor = result_tensor[:, :, :actual_num_frames, pad_t:slice_h, pad_l:slice_w]
video_np = (cropped_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy() * 255).astype(np.uint8)
with imageio.get_writer(output_path, fps=video_fps, codec='libx264', quality=8) as writer:
for i, frame in enumerate(video_np): writer.append_data(frame)
return output_path, actual_num_frames
finally:
if ENABLE_MODELS and use_attention_slicing:
pipeline_instance.disable_attention_slicing()
def trim_video_to_frames(input_path: str, output_path: str, frames_to_keep: int) -> str:
try:
subprocess.run(f"ffmpeg -y -v error -i \"{input_path}\" -vf \"select='lt(n,{frames_to_keep})'\" -an \"{output_path}\"", shell=True, check=True, text=True)
return output_path
except subprocess.CalledProcessError as e: raise gr.Error(f"FFmpeg falhou ao cortar vídeo: {e.stderr}")
def extract_last_n_frames_as_video(input_path: str, output_path: str, n_frames: int) -> str:
try:
cmd_probe = f"ffprobe -v error -select_streams v:0 -count_frames -show_entries stream=nb_read_frames -of default=nokey=1:noprint_wrappers=1 \"{input_path}\""
result = subprocess.run(cmd_probe, shell=True, check=True, text=True, capture_output=True)
total_frames = int(result.stdout.strip())
if n_frames >= total_frames:
shutil.copyfile(input_path, output_path)
return output_path
start_frame = total_frames - n_frames
cmd_ffmpeg = f"ffmpeg -y -v error -i \"{input_path}\" -vf \"select='gte(n,{start_frame})'\" -vframes {n_frames} -an \"{output_path}\""
subprocess.run(cmd_ffmpeg, shell=True, check=True, text=True)
return output_path
except (subprocess.CalledProcessError, ValueError) as e:
raise gr.Error(f"FFmpeg falhou ao extrair os últimos {n_frames} frames: {getattr(e, 'stderr', str(e))}")
def concatenate_and_trim_masterpiece(fragment_paths: list, fragment_duration_frames: int, eco_video_frames: int, progress=gr.Progress()):
if not fragment_paths: raise gr.Error("Nenhum fragmento de vídeo para concatenar.")
progress(0.1, desc="Preparando fragmentos para montagem final...");
try:
list_file_path = os.path.join(WORKSPACE_DIR, "concat_list.txt")
final_output_path = os.path.join(WORKSPACE_DIR, "masterpiece_final.mp4")
temp_files_for_concat = []
final_clip_len = int(fragment_duration_frames - eco_video_frames)
for i, p in enumerate(fragment_paths):
if i == len(fragment_paths) - 1:
temp_files_for_concat.append(os.path.abspath(p))
progress(0.1 + (i / len(fragment_paths)) * 0.8, desc=f"Mantendo último fragmento: {os.path.basename(p)}")
else:
temp_path = os.path.join(WORKSPACE_DIR, f"temp_concat_{i}.mp4")
progress(0.1 + (i / len(fragment_paths)) * 0.8, desc=f"Cortando {os.path.basename(p)} para {final_clip_len} frames")
trim_video_to_frames(p, temp_path, final_clip_len)
temp_files_for_concat.append(temp_path)
progress(0.9, desc="Concatenando clipes...")
with open(list_file_path, "w") as f:
for p_temp in temp_files_for_concat: f.write(f"file '{p_temp}'\n")
subprocess.run(f"ffmpeg -y -v error -f concat -safe 0 -i \"{list_file_path}\" -c copy \"{final_output_path}\"", shell=True, check=True, text=True)
progress(1.0, desc="Montagem concluída!")
return final_output_path
except subprocess.CalledProcessError as e:
raise gr.Error(f"FFmpeg falhou na concatenação final: {e.stderr}")
# --- Ato 5: A Interface com o Mundo (UI) ---
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# NOVIM-6.2 (Painel de Controle do Diretor)\n*By Carlex & Gemini & DreamO - Versão de Demonstração*")
if not ENABLE_MODELS:
gr.Warning(
"""
**MODO DE DEMONSTRAÇÃO ATIVADO**
Você pode explorar a interface e usar a "Etapa 1: Gerar Roteiro" se tiver uma chave da API Gemini configurada.
Para habilitar a geração de imagens e vídeos (Etapas 2 e 3), você precisa:
1. **Fork este Space:** Clique no menu de três pontos ao lado do título e selecione "Duplicate this Space".
2. **Escolha um Hardware de GPU:** Na tela de duplicação, selecione um hardware de GPU (ex: T4 Small).
3. **Edite o `app.py`:** Na aba "Files" do seu novo Space, edite o arquivo `app.py`.
4. **Ative os Modelos:** Mude a linha `ENABLE_MODELS = False` para `ENABLE_MODELS = True`.
5. Salve o arquivo. O Space será reiniciado com a funcionalidade completa.
"""
)
if os.path.exists(WORKSPACE_DIR): shutil.rmtree(WORKSPACE_DIR)
os.makedirs(WORKSPACE_DIR); Path("prompts").mkdir(exist_ok=True)
scene_storyboard_state, keyframe_images_state, fragment_list_state = gr.State([]), gr.State([]), gr.State([])
prompt_geral_state, processed_ref_path_state = gr.State(""), gr.State("")
gr.Markdown("--- \n ## ETAPA 1: O ROTEIRO (IA Roteirista)")
with gr.Row():
with gr.Column(scale=1):
prompt_input = gr.Textbox(label="Ideia Geral (Prompt)")
num_fragments_input = gr.Slider(2, 5, 4, step=1, label="Número de Atos (Keyframes)")
image_input = gr.Image(type="filepath", label=f"Imagem de Referência Principal (será {TARGET_RESOLUTION}x{TARGET_RESOLUTION})")
director_button = gr.Button("▶️ 1. Gerar Roteiro", variant="primary")
with gr.Column(scale=2): storyboard_to_show = gr.JSON(label="Roteiro de Cenas Gerado (em Inglês)")
gr.Markdown("--- \n ## ETAPA 2: OS KEYFRAMES (IA Pintor & Diretor de Arte)")
with gr.Row():
with gr.Column(scale=2):
gr.Markdown("Forneça referências para guiar a IA. A Principal é obrigatória. A Secundária é opcional (ex: para estilo ou uma segunda pessoa).")
with gr.Row():
with gr.Column():
ref1_image = gr.Image(label="Referência Principal (Conteúdo/ID)", type="filepath")
ref1_task = gr.Dropdown(choices=["ip", "id", "style"], value="ip", label="Tarefa da Ref. Principal")
with gr.Column():
ref2_image = gr.Image(label="Referência Secundária (Opcional)", type="filepath")
ref2_task = gr.Dropdown(choices=["ip", "id", "style"], value="style", label="Tarefa da Ref. Secundária")
photographer_button = gr.Button("▶️ 2. Pintar Imagens-Chave em Cadeia", variant="primary")
with gr.Column(scale=1):
keyframe_log_output = gr.Textbox(label="Diário de Bordo do Pintor", lines=15, interactive=False)
keyframe_gallery_output = gr.Gallery(label="Imagens-Chave Pintadas", object_fit="contain", height="auto", type="filepath")
gr.Markdown("--- \n ## ETAPA 3: A PRODUÇÃO (IA Cineasta & Câmera)")
with gr.Row():
with gr.Column(scale=1):
cfg_slider = gr.Slider(1.0, 10.0, 2.5, step=0.1, label="CFG")
with gr.Accordion("Controles Avançados de Timing e Performance", open=False):
video_duration_slider = gr.Slider(label="Duração da Geração Bruta (segundos)", minimum=2.0, maximum=10.0, value=6.0, step=0.5)
video_fps_slider = gr.Slider(label="FPS do Vídeo", minimum=12, maximum=30, value=30, step=1)
num_inference_steps_slider = gr.Slider(label="Etapas de Inferência", minimum=10, maximum=50, value=30, step=1)
slicing_checkbox = gr.Checkbox(label="Usar Attention Slicing (Economiza VRAM)", value=True)
gr.Markdown("---"); gr.Markdown("#### Controles de Duração (Arquitetura Eco + Déjà Vu)")
fragment_duration_slider = gr.Slider(label="Duração de Cada Fragmento (Frames)", minimum=30, maximum=300, value=90, step=1)
eco_frames_slider = gr.Slider(label="Tamanho do Eco Cinético (Frames)", minimum=4, maximum=48, value=8, step=1)
mid_cond_strength_slider = gr.Slider(label="Força do 'Caminho'", minimum=0.1, maximum=1.0, value=0.5, step=0.05)
gr.Markdown(
"""
**Instruções (Nova Arquitetura):**
- **Duração da Geração Bruta:** Tempo total que a IA tem para criar a transição. Deve ser MAIOR que a Duração do Fragmento.
- **Duração de Cada Fragmento:** O comprimento final de cada clipe de vídeo que será gerado.
- **Tamanho do Eco Cinético:** Quantos frames do *final* de um fragmento serão passados para o próximo para garantir continuidade.
- **Força do Caminho:** Define o quão forte a imagem-chave intermediária ('Caminho') influencia a transição.
"""
)
animator_button = gr.Button("▶️ 3. Produzir Cenas (Handoff Cinético)", variant="primary")
with gr.Accordion("Visualização das Mídias de Condicionamento (Ao Vivo)", open=True):
with gr.Row():
prod_media_start_output = gr.Video(label="Mídia Inicial (Eco/K1)", interactive=False)
prod_media_mid_output = gr.Image(label="Mídia do Caminho (K_i-1)", interactive=False, visible=False)
prod_media_end_output = gr.Image(label="Mídia de Destino (K_i)", interactive=False)
production_log_output = gr.Textbox(label="Diário de Bordo da Produção", lines=10, interactive=False)
with gr.Column(scale=1): video_gallery_glitch = gr.Gallery(label="Fragmentos Gerados (Versões Cortadas)", object_fit="contain", height="auto", type="video")
fragment_duration_state = gr.State()
eco_frames_state = gr.State()
gr.Markdown(f"--- \n ## ETAPA 4: PÓS-PRODUÇÃO (Editor)")
editor_button = gr.Button("▶️ 4. Montar Vídeo Final", variant="primary")
final_video_output = gr.Video(label="A Obra-Prima Final", width=TARGET_RESOLUTION)
gr.Markdown(
"""
---
### A Arquitetura: Eco + Déjà Vu
A geração começa com um "Big Bang" entre os dois primeiros keyframes. A partir daí, a mágica acontece.
* **O Eco (A Memória Física):** No final de cada cena, os últimos frames são capturados e salvos como um pequeno vídeo, o `Eco`. Ele carrega a "energia cinética" do movimento, iluminação e atmosfera da cena que acabou.
* **O Déjà Vu (A Memória Conceitual):** Para criar a próxima cena, o Cineasta de IA (Gemini) assiste ao `Eco`, olha para o keyframe do "caminho" e o keyframe do "destino". Com essa visão tripla, ele tem um "déjà vu", uma memória do que acabou de acontecer que o inspira a escrever uma instrução de câmera precisa para conectar o passado ao futuro de forma fluida e coerente.
"""
)
# --- Ato 6: A Regência (Lógica de Conexão dos Botões) ---
def process_and_update_storyboard(num_fragments, prompt, image_path):
processed_path = process_image_to_square(image_path)
if not processed_path: raise gr.Error("A imagem de referência é inválida ou não foi fornecida.")
storyboard = run_storyboard_generation(num_fragments, prompt, processed_path)
return storyboard, prompt, processed_path
director_button.click(
fn=process_and_update_storyboard,
inputs=[num_fragments_input, prompt_input, image_input],
outputs=[scene_storyboard_state, prompt_geral_state, processed_ref_path_state]
).success(
fn=lambda s, p: (s, p),
inputs=[scene_storyboard_state, processed_ref_path_state],
outputs=[storyboard_to_show, ref1_image]
)
@photographer_button.click(
inputs=[scene_storyboard_state, ref1_image, ref1_task, ref2_image, ref2_task],
outputs=[keyframe_log_output, keyframe_gallery_output, keyframe_images_state]
)
def run_keyframe_generation_wrapper(storyboard, ref1_img, ref1_tsk, ref2_img, ref2_tsk, progress=gr.Progress()):
ref_data = [
{'image': ref1_img, 'task': ref1_tsk},
{'image': ref2_img, 'task': ref2_tsk}
]
yield from run_keyframe_generation(storyboard, ref_data, progress)
animator_button.click(
fn=lambda frag_dur, eco_dur: (frag_dur, eco_dur),
inputs=[fragment_duration_slider, eco_frames_slider],
outputs=[fragment_duration_state, eco_frames_state]
).then(
fn=run_video_production,
inputs=[
video_duration_slider, video_fps_slider, eco_frames_slider, slicing_checkbox,
fragment_duration_slider, mid_cond_strength_slider,
num_inference_steps_slider,
prompt_geral_state, keyframe_images_state, scene_storyboard_state, cfg_slider
],
outputs=[
production_log_output, video_gallery_glitch, fragment_list_state,
prod_media_start_output, prod_media_mid_output, prod_media_end_output
]
)
editor_button.click(
fn=concatenate_and_trim_masterpiece,
inputs=[fragment_list_state, fragment_duration_state, eco_frames_state],
outputs=[final_video_output]
)
if __name__ == "__main__":
demo.queue().launch(server_name="0.0.0.0", share=True) |