Spaces:
Running
on
Zero
Running
on
Zero
| import math | |
| from typing import Optional | |
| import torch | |
| import torch.nn.functional as F | |
| from diffusers.models.attention_processor import Attention | |
| from diffusers.models.embeddings import apply_rotary_emb | |
| class NAGFluxAttnProcessor2_0: | |
| """Attention processor used typically in processing the SD3-like self-attention projections.""" | |
| def __init__( | |
| self, | |
| nag_scale: float = 1.0, | |
| nag_tau=2.5, | |
| nag_alpha=0.25, | |
| encoder_hidden_states_length: int = None, | |
| ): | |
| if not hasattr(F, "scaled_dot_product_attention"): | |
| raise ImportError("FluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") | |
| self.nag_scale = nag_scale | |
| self.nag_tau = nag_tau | |
| self.nag_alpha = nag_alpha | |
| self.encoder_hidden_states_length = encoder_hidden_states_length | |
| def __call__( | |
| self, | |
| attn: Attention, | |
| hidden_states: torch.FloatTensor, | |
| encoder_hidden_states: torch.FloatTensor = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| image_rotary_emb: Optional[torch.Tensor] = None, | |
| ) -> torch.FloatTensor: | |
| batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
| if self.nag_scale > 1.: | |
| if encoder_hidden_states is not None: | |
| assert len(hidden_states) == batch_size * 0.5 | |
| apply_guidance = True | |
| else: | |
| apply_guidance = False | |
| # `sample` projections. | |
| query = attn.to_q(hidden_states) | |
| key = attn.to_k(hidden_states) | |
| value = attn.to_v(hidden_states) | |
| # attention | |
| if apply_guidance and encoder_hidden_states is not None: | |
| query = query.tile(2, 1, 1) | |
| key = key.tile(2, 1, 1) | |
| value = value.tile(2, 1, 1) | |
| inner_dim = key.shape[-1] | |
| head_dim = inner_dim // attn.heads | |
| query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| if attn.norm_q is not None: | |
| query = attn.norm_q(query) | |
| if attn.norm_k is not None: | |
| key = attn.norm_k(key) | |
| # the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states` | |
| if encoder_hidden_states is not None: | |
| # `context` projections. | |
| encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) | |
| encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) | |
| encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) | |
| encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( | |
| batch_size, -1, attn.heads, head_dim | |
| ).transpose(1, 2) | |
| encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( | |
| batch_size, -1, attn.heads, head_dim | |
| ).transpose(1, 2) | |
| encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( | |
| batch_size, -1, attn.heads, head_dim | |
| ).transpose(1, 2) | |
| if attn.norm_added_q is not None: | |
| encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) | |
| if attn.norm_added_k is not None: | |
| encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj) | |
| query = torch.cat([encoder_hidden_states_query_proj, query], dim=2) | |
| key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) | |
| value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) | |
| encoder_hidden_states_length = encoder_hidden_states.shape[1] | |
| else: | |
| assert self.encoder_hidden_states_length is not None | |
| encoder_hidden_states_length = self.encoder_hidden_states_length | |
| if image_rotary_emb is not None: | |
| query = apply_rotary_emb(query, image_rotary_emb) | |
| key = apply_rotary_emb(key, image_rotary_emb) | |
| if not apply_guidance: | |
| hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False) | |
| hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
| hidden_states = hidden_states.to(query.dtype) | |
| else: | |
| origin_batch_size = batch_size // 2 | |
| query, query_negative = torch.chunk(query, 2, dim=0) | |
| key, key_negative = torch.chunk(key, 2, dim=0) | |
| value, value_negative = torch.chunk(value, 2, dim=0) | |
| hidden_states_negative = F.scaled_dot_product_attention(query_negative, key_negative, value_negative, dropout_p=0.0, is_causal=False) | |
| hidden_states_negative = hidden_states_negative.transpose(1, 2).reshape(origin_batch_size, -1, attn.heads * head_dim) | |
| hidden_states_negative = hidden_states_negative.to(query.dtype) | |
| hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False) | |
| hidden_states = hidden_states.transpose(1, 2).reshape(origin_batch_size, -1, attn.heads * head_dim) | |
| hidden_states = hidden_states.to(query.dtype) | |
| if encoder_hidden_states is not None: | |
| encoder_hidden_states, hidden_states = ( | |
| hidden_states[:, : encoder_hidden_states.shape[1]], | |
| hidden_states[:, encoder_hidden_states.shape[1] :], | |
| ) | |
| if apply_guidance: | |
| encoder_hidden_states_negative, hidden_states_negative = ( | |
| hidden_states_negative[:, : encoder_hidden_states.shape[1]], | |
| hidden_states_negative[:, encoder_hidden_states.shape[1]:], | |
| ) | |
| hidden_states_positive = hidden_states | |
| hidden_states_guidance = hidden_states_positive * self.nag_scale - hidden_states_negative * (self.nag_scale - 1) | |
| norm_positive = torch.norm(hidden_states_positive, p=2, dim=-1, keepdim=True).expand(*hidden_states_positive.shape) | |
| norm_guidance = torch.norm(hidden_states_guidance, p=2, dim=-1, keepdim=True).expand(*hidden_states_positive.shape) | |
| scale = norm_guidance / norm_positive | |
| hidden_states_guidance = hidden_states_guidance * torch.minimum(scale, scale.new_ones(1) * self.nag_tau) / scale | |
| hidden_states = hidden_states_guidance * self.nag_alpha + hidden_states_positive * (1 - self.nag_alpha) | |
| encoder_hidden_states = torch.cat((encoder_hidden_states, encoder_hidden_states_negative), dim=0) | |
| # linear proj | |
| hidden_states = attn.to_out[0](hidden_states) | |
| # dropout | |
| hidden_states = attn.to_out[1](hidden_states) | |
| encoder_hidden_states = attn.to_add_out(encoder_hidden_states) | |
| return hidden_states, encoder_hidden_states | |
| else: | |
| if apply_guidance: | |
| image_hidden_states_negative = hidden_states_negative[:, encoder_hidden_states_length:] | |
| image_hidden_states = hidden_states[:, encoder_hidden_states_length:] | |
| image_hidden_states_positive = image_hidden_states | |
| image_hidden_states_guidance = image_hidden_states_positive * self.nag_scale - image_hidden_states_negative * (self.nag_scale - 1) | |
| norm_positive = torch.norm(image_hidden_states_positive, p=2, dim=-1, keepdim=True).expand(*image_hidden_states_positive.shape) | |
| norm_guidance = torch.norm(image_hidden_states_guidance, p=2, dim=-1, keepdim=True).expand(*image_hidden_states_positive.shape) | |
| scale = norm_guidance / norm_positive | |
| image_hidden_states_guidance = image_hidden_states_guidance * torch.minimum(scale, scale.new_ones(1) * self.nag_tau) / scale | |
| # scale = torch.nan_to_num(scale, 10) | |
| # image_hidden_states_guidance[scale > self.nag_tau] = image_hidden_states_guidance[scale > self.nag_tau] / (norm_guidance[scale > self.nag_tau] + 1e-7) * norm_positive[scale > self.nag_tau] * self.nag_tau | |
| image_hidden_states = image_hidden_states_guidance * self.nag_alpha + image_hidden_states_positive * (1 - self.nag_alpha) | |
| hidden_states_negative[:, encoder_hidden_states_length:] = image_hidden_states | |
| hidden_states[:, encoder_hidden_states_length:] = image_hidden_states | |
| hidden_states = torch.cat((hidden_states, hidden_states_negative), dim=0) | |
| return hidden_states | |