Spaces:
Sleeping
Sleeping
File size: 12,078 Bytes
a289fe4 f4e3c36 9ca4e02 27a259f a289fe4 6b8dd5f 0a902de a289fe4 92d639d d99e5e0 b33a74e d99e5e0 b33a74e 0a902de 92d639d 0a902de a289fe4 9ca4e02 f4e3c36 a289fe4 27a259f 92d639d a289fe4 ebc87be 27a259f 9ca4e02 ebc87be 9ca4e02 27a259f 9ca4e02 27a259f 9ca4e02 27a259f 9ca4e02 27a259f 9ca4e02 27a259f 9ca4e02 27a259f 9ca4e02 27a259f 9ca4e02 27a259f 9ca4e02 27a259f 9ca4e02 27a259f 9ca4e02 27a259f 92d639d a289fe4 9ca4e02 27a259f 9ca4e02 27a259f 9ca4e02 27a259f 9ca4e02 27a259f 9ca4e02 27a259f 9ca4e02 27a259f 9ca4e02 27a259f 9ca4e02 27a259f 9ca4e02 a289fe4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
from fastapi import FastAPI
from pydantic import BaseModel
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
import torch, os, base64, io, logging, time
from typing import Any, Dict, List, Tuple
from PIL import Image
MODEL_ID = "osunlp/UGround-V1-72B"
CACHE_DIR = (
os.environ.get("HF_HUB_CACHE")
or os.environ.get("HF_HOME")
or "/data/huggingface"
)
# PyTorch performance settings
# 1) Ensure CUDA kernel cache directory is writable/persistent to avoid recompilation stalls
KERNEL_CACHE_DIR = os.environ.get("PYTORCH_KERNEL_CACHE_PATH", "/tmp/torch_kernels")
os.environ["PYTORCH_KERNEL_CACHE_PATH"] = KERNEL_CACHE_DIR
try:
os.makedirs(KERNEL_CACHE_DIR, exist_ok=True)
except Exception:
pass
# 2) Enable TF32 for faster matmul on Ampere+ GPUs (minimal quality impact)
try:
torch.backends.cuda.matmul.allow_tf32 = True # type: ignore[attr-defined]
torch.backends.cudnn.allow_tf32 = True # type: ignore[attr-defined]
torch.set_float32_matmul_precision("high") # type: ignore[attr-defined]
except Exception:
pass
processor = AutoProcessor.from_pretrained(
MODEL_ID, trust_remote_code=True, cache_dir=CACHE_DIR, use_fast=False
)
model = Qwen2VLForConditionalGeneration.from_pretrained(
MODEL_ID,
dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True,
cache_dir=CACHE_DIR,
)
model.eval()
try:
torch.set_grad_enabled(False)
except Exception:
pass
app = FastAPI()
# Configure basic logging for debugging
logging.basicConfig(
level=logging.DEBUG,
format="%(asctime)s %(levelname)s %(name)s: %(message)s"
)
logger = logging.getLogger(__name__)
@app.get("/")
async def root():
return {"status": "ok"}
class ChatCompletionRequest(BaseModel):
model: str
messages: List[Dict[str, Any]]
max_tokens: int = 256
MAX_IMAGE_WIDTH = 512
MAX_IMAGE_HEIGHT = 388
def _decode_base64_image(data_url: str) -> Image.Image:
try:
is_data_url = data_url.startswith("data:")
if is_data_url:
header, b64data = data_url.split(",", 1)
logger.debug("Decoding image from data URL; header prefix=%r", header[:50])
else:
b64data = data_url
logger.debug("Decoding image from raw base64 string; length=%d", len(b64data))
img_bytes = base64.b64decode(b64data)
img = Image.open(io.BytesIO(img_bytes)).convert("RGB")
orig_w, orig_h = img.width, img.height
# Downscale if larger than bounds, preserving aspect ratio
if orig_w > MAX_IMAGE_WIDTH or orig_h > MAX_IMAGE_HEIGHT:
target = (MAX_IMAGE_WIDTH, MAX_IMAGE_HEIGHT)
img = img.copy()
img.thumbnail(target, Image.LANCZOS)
logger.debug(
"Resized image from %sx%s to %sx%s (bounds %sx%s)",
orig_w,
orig_h,
img.width,
img.height,
MAX_IMAGE_WIDTH,
MAX_IMAGE_HEIGHT,
)
try:
logger.debug("Decoded image: size=%sx%s mode=%s", img.width, img.height, img.mode)
except Exception:
logger.debug("Decoded image but could not log image metadata")
return img
except Exception:
logger.exception("Failed to decode base64 image")
raise
def _to_qwen_messages_and_images(messages: List[Dict[str, Any]]) -> Tuple[List[Dict[str, Any]], List[Any]]:
qwen_msgs: List[Dict[str, Any]] = []
images: List[Any] = []
logger.debug("Begin parsing messages: count=%d", len(messages) if messages else 0)
for idx, msg in enumerate(messages):
role = msg.get("role", "user")
content = msg.get("content")
logger.debug("Processing message #%d role=%s content_type=%s", idx, role, type(content).__name__)
q_content: List[Dict[str, Any]] = []
if isinstance(content, str):
logger.debug("Message #%d text length=%d", idx, len(content))
q_content.append({"type": "text", "text": content})
elif isinstance(content, list):
logger.debug("Message #%d has %d content parts", idx, len(content))
for pidx, part in enumerate(content):
ptype = part.get("type")
logger.debug("Part #%d type=%s", pidx, ptype)
if ptype == "text":
text_val = part.get("text") or part.get("content") or ""
logger.debug("Part #%d text length=%d", pidx, len(text_val))
q_content.append({"type": "text", "text": text_val})
elif ptype in ("image", "image_url"):
# OpenAI style: {type:"image_url", image_url:{url:"..."}}
url = part.get("image")
if url is None and isinstance(part.get("image_url"), dict):
url = part["image_url"].get("url")
if isinstance(url, str) and url.startswith("data:image"):
logger.debug("Part #%d image provided as base64 data URL", pidx)
img = _decode_base64_image(url)
images.append(img)
q_content.append({"type": "image", "image": img})
else:
# URL or non-base64 string
logger.debug("Part #%d image provided as URL or non-base64 string: %s", pidx, str(url)[:200])
images.append(url)
q_content.append({"type": "image", "image": url})
else:
# Unknown content; coerce to text
logger.debug("Message #%d unknown content type; coercing to text", idx)
q_content.append({"type": "text", "text": str(content)})
qwen_msgs.append({"role": role, "content": q_content})
logger.debug("Finished parsing messages: qwen_msgs=%d images=%d", len(qwen_msgs), len(images))
return qwen_msgs, images
def _make_tiny_base64_png(size: Tuple[int, int] = (64, 48), color: Tuple[int, int, int] = (128, 128, 128)) -> str:
buf = io.BytesIO()
Image.new("RGB", size, color).save(buf, format="PNG")
data = base64.b64encode(buf.getvalue()).decode("ascii")
return f"data:image/png;base64,{data}"
@app.on_event("startup")
async def _startup_warmup():
if os.environ.get("DISABLE_WARMUP", "0") == "1":
logger.info("Warmup disabled via DISABLE_WARMUP=1")
return
try:
logger.info("Warmup start: compiling kernels (text + tiny image)")
# Text-only warmup
text_msgs: List[Dict[str, Any]] = [
{"role": "user", "content": "Hello"}
]
qmsgs_t, _ = _to_qwen_messages_and_images(text_msgs)
prompt_t = processor.apply_chat_template(qmsgs_t, tokenize=False, add_generation_prompt=True)
inputs_t = processor(text=[prompt_t], images=None, padding=True, return_tensors="pt")
inputs_t = inputs_t.to(model.device)
_t0 = time.perf_counter()
with torch.no_grad():
_ = model.generate(**inputs_t, max_new_tokens=int(os.environ.get("WARMUP_MAX_NEW_TOKENS", "4")), max_time=float(os.environ.get("WARMUP_MAX_TIME_SECONDS", "3")))
logger.info("Text warmup done in %.1f ms", (time.perf_counter() - _t0) * 1000.0)
# Tiny image + text warmup
tiny_url = _make_tiny_base64_png()
viz_msgs: List[Dict[str, Any]] = [
{"role": "user", "content": [
{"type": "text", "text": "Describe the image"},
{"type": "image_url", "image_url": {"url": tiny_url}},
]}
]
qmsgs_v, images_v = _to_qwen_messages_and_images(viz_msgs)
prompt_v = processor.apply_chat_template(qmsgs_v, tokenize=False, add_generation_prompt=True)
inputs_v = processor(text=[prompt_v], images=images_v, padding=True, return_tensors="pt")
inputs_v = inputs_v.to(model.device)
_t1 = time.perf_counter()
with torch.no_grad():
_ = model.generate(**inputs_v, max_new_tokens=int(os.environ.get("WARMUP_MAX_NEW_TOKENS", "4")), max_time=float(os.environ.get("WARMUP_MAX_TIME_SECONDS", "3")))
logger.info("Vision warmup done in %.1f ms", (time.perf_counter() - _t1) * 1000.0)
logger.info("Warmup complete")
except Exception:
logger.exception("Warmup failed")
@app.post("/v1/chat/completions")
async def chat_completions(req: ChatCompletionRequest):
logger.debug(
"Request received: model=%s, max_tokens=%s, message_count=%d",
req.model,
req.max_tokens,
len(req.messages) if req.messages is not None else 0,
)
if req.messages:
logger.debug("First message preview: %s", str(req.messages[0])[:300])
qwen_messages, image_inputs = _to_qwen_messages_and_images(req.messages)
logger.debug(
"Converted messages: qwen_count=%d, images_count=%d",
len(qwen_messages),
len(image_inputs) if image_inputs is not None else 0,
)
if qwen_messages:
logger.debug("First qwen message preview: %s", str(qwen_messages[0])[:300])
prompt_text = processor.apply_chat_template(
qwen_messages, tokenize=False, add_generation_prompt=True
)
logger.debug("Prompt length (chars)=%d; preview=%r", len(prompt_text), prompt_text[:200])
inputs = processor(
text=[prompt_text],
images=image_inputs if image_inputs else None,
padding=True,
return_tensors="pt",
)
try:
tensor_info_pre = {
k: (tuple(v.shape), str(getattr(v, "dtype", "<na>")))
for k, v in inputs.items()
if hasattr(v, "shape")
}
logger.debug("Processor outputs (pre .to): %s", tensor_info_pre)
except Exception:
logger.debug("Could not summarize processor outputs before device move")
inputs = inputs.to(model.device)
try:
tensor_info_post = {
k: (
tuple(v.shape),
str(getattr(v, "dtype", "<na>")),
str(getattr(v, "device", "<na>")),
)
for k, v in inputs.items()
if torch.is_tensor(v)
}
logger.debug("Inputs moved to device=%s; tensor_info=%s", getattr(model, "device", "<unknown>"), tensor_info_post)
except Exception:
logger.debug("Could not summarize inputs after device move")
logger.debug("Starting generation: max_new_tokens=%d", req.max_tokens)
_t0 = time.perf_counter()
generated_ids = model.generate(**inputs, max_new_tokens=req.max_tokens)
_elapsed_ms = (time.perf_counter() - _t0) * 1000.0
try:
logger.debug(
"Generation done in %.1f ms; generated_ids shape=%s dtype=%s device=%s",
_elapsed_ms,
tuple(generated_ids.shape) if hasattr(generated_ids, "shape") else "<na>",
str(getattr(generated_ids, "dtype", "<na>")),
str(getattr(generated_ids, "device", "<na>")),
)
except Exception:
logger.debug("Could not summarize generated_ids")
trimmed = [
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
try:
lengths_in = [row.size(0) for row in inputs.input_ids]
lengths_out = [row.size(0) for row in generated_ids]
logger.debug("Token lengths: input=%s, output=%s", lengths_in, lengths_out)
except Exception:
logger.debug("Could not compute token length summaries")
output_texts = processor.batch_decode(
trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
text = output_texts[0] if output_texts else ""
logger.debug(
"Decoded %d sequences; first_text_len=%d",
len(output_texts),
len(text) if text else 0,
)
if text:
logger.debug("Output preview: %r", text[:500])
return {
"id": "chatcmpl-uground72b",
"object": "chat.completion",
"choices": [{
"index": 0,
"message": {"role": "assistant", "content": text},
"finish_reason": "stop"
}]
}
|