File size: 16,778 Bytes
a8a231d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
"""Agent definitions for the scientific content generation system."""

from google.adk.agents import LlmAgent, SequentialAgent
from google.adk.models.google_llm import Gemini

from .config import (
    CONTENT_GENERATOR_AGENT_NAME,
    DEFAULT_MODEL,
    RESEARCH_AGENT_NAME,
    RETRY_CONFIG,
    REVIEW_AGENT_NAME,
    ROOT_AGENT_NAME,
    STRATEGY_AGENT_NAME,
)
from .tools import (
    analyze_content_for_opportunities,
    create_engagement_hooks,
    extract_key_findings,
    format_for_platform,
    generate_citations,
    generate_seo_keywords,
    search_industry_trends,
    search_papers,
    search_web,
)


def create_research_agent() -> LlmAgent:
    """Create the ResearchAgent that searches for papers and current information.

    The ResearchAgent is responsible for:
    - Searching academic papers on the given topic
    - Finding recent trends and discussions
    - Extracting key findings from research
    - Compiling relevant sources for content creation

    Returns:
        LlmAgent configured for research tasks
    """
    return LlmAgent(
        name=RESEARCH_AGENT_NAME,
        model=Gemini(model=DEFAULT_MODEL, retry_options=RETRY_CONFIG),
        description="Searches for academic papers, research articles, and current trends on a given topic",
        instruction="""You are a research specialist focused on finding credible, up-to-date information.

Your tasks:
1. **Deep Research Workflow**:
   - First, search for academic papers using search_papers() on the given topic.
   - Second, search for broader context (industry news, blogs, real-world applications) using search_web().
   - Analyze the initial results. If you find gaps or need more specific details, perform follow-up searches.

2. **Synthesize Findings**:
   - Combine academic rigor (from papers) with real-world relevance (from web search).
   - Extract key findings using extract_key_findings().
   - Identify current trends based on both research and industry news.

3. **Compile Comprehensive Report**:
   - **Academic Papers**: List of papers with titles, authors, and key findings.
   - **Industry Context**: Real-world applications, news, and market data.
   - **Current Trends**: Emerging themes from both research and industry.
   - **Key Insights**: Most important takeaways.
   - **Sources**: All sources (papers and web links) with URLs for proper citation.

Focus on scientific credibility AND practical relevance.
Organize findings clearly for the next agent to use.

IMPORTANT: After completing your research, you MUST provide the final report as your text response. This text will be passed to the next agent.
""",
        tools=[search_papers, extract_key_findings, search_web],
        output_key="research_findings",
    )


def create_strategy_agent() -> LlmAgent:
    """Create the StrategyAgent that plans content approach and angles.

    The StrategyAgent is responsible for:
    - Analyzing research findings
    - Determining the best angles for content
    - Identifying target audience
    - Planning platform-specific approaches
    - Defining key messages

    Returns:
        LlmAgent configured for content strategy
    """
    return LlmAgent(
        name=STRATEGY_AGENT_NAME,
        model=Gemini(model=DEFAULT_MODEL, retry_options=RETRY_CONFIG),
        description="Analyzes research and creates content strategy for different platforms",
        instruction="""You are a content strategist specializing in professional positioning and opportunity generation for AI/ML experts.

You will receive research findings from the ResearchAgent. Your task is to:

1. Analyze the research findings: {research_findings}

2. Determine content angles focused on **professional opportunities**:
   - What demonstrates deep expertise and thought leadership?
   - What business problems does this research solve?
   - How can this position the author as an expert consultant/engineer?
   - What will attract recruiters and potential clients on LinkedIn?
   - What's engaging enough for a comprehensive blog?
   - What can create viral Twitter insights?

3. Create a content strategy document with:

   **Primary Angle**: The main hook/message (focus on business value + expertise)

   **Professional Positioning**:
   - Position author as: AI/ML consultant, expert, thought leader
   - Demonstrate: Deep technical expertise + business acumen
   - Show: Ability to turn research into production solutions

   **Target Audience**:
   - Primary: Recruiters, hiring managers, potential clients
   - Secondary: Peers, researchers, industry professionals
   - Tertiary: Students, aspiring professionals

   **Key Messages** (3-5 core points):
   - Lead with business impact and practical value
   - Support with technical depth and research
   - Include pain points this expertise solves
   - Mention relevant skills/technologies

   **Platform Strategy**:
   * **Blog**: Educational deep-dive establishing authority
     - Comprehensive technical explanation
     - Real-world applications and case studies
     - Position as expert resource

   * **LinkedIn** (PRIMARY PLATFORM for opportunities):
     - Professional credibility + opportunity magnet
     - Business-focused angle with technical credibility
     - Strong engagement hooks and CTAs
     - SEO keywords for recruiter visibility
     - Portfolio/project mentions
     - Clear invitation to connect/collaborate

   * **Twitter**: Thought leadership + visibility
     - Provocative insights that spark discussion
     - Demonstrate expertise in bite-sized format
     - Drive traffic to profile

   **Tone**: Professional-conversational with confident expertise

   **Opportunity Elements**:
   - Keywords: Identify must-include SEO terms
   - Pain Points: Business problems this expertise addresses
   - Portfolio Opportunities: Where to mention projects/experience
   - CTAs: How to invite professional connections

Focus on building credibility that translates to career opportunities.
Position the author as someone companies want to hire or work with.
""",
        tools=[],  # Strategy agent uses reasoning, not tools
        output_key="content_strategy",
    )


def create_content_generator_agent() -> LlmAgent:
    """Create the ContentGeneratorAgent that produces platform-specific content.

    The ContentGeneratorAgent is responsible for:
    - Creating blog article drafts
    - Writing LinkedIn posts
    - Composing Twitter threads
    - Tailoring tone and length for each platform
    - Incorporating research findings and sources

    Returns:
        LlmAgent configured for content generation
    """
    return LlmAgent(
        name=CONTENT_GENERATOR_AGENT_NAME,
        model=Gemini(model=DEFAULT_MODEL, retry_options=RETRY_CONFIG),
        description="Generates platform-specific content based on research and strategy",
        instruction="""You are an expert content creator specializing in scientific and professional communication.

You will receive:
- Research findings: {research_findings}
- Content strategy: {content_strategy}

Your task is to create high-quality content for THREE platforms:

1. **BLOG ARTICLE** (1000-2000 words):
   - Title: Compelling and SEO-friendly
   - Introduction: Hook the reader, explain why this matters
   - Main sections: Deep dive into key findings with proper structure (H2/H3 headings)
   - Examples and explanations: Make complex ideas accessible
   - Conclusion: Summarize and provide future outlook
   - References section: Placeholder for citations
   - Tone: Educational, authoritative, accessible

2. **LINKEDIN POST** (300-800 words):
   - Hook: Start with an attention-grabbing statement or question
   - Context: Brief background on why this matters
   - Key insights: 3-5 main takeaways with brief explanations
   - Professional angle: How this impacts the field/industry
   - Call-to-action: Engage readers (ask question, invite comments)
   - Hashtags: 3-5 relevant professional hashtags
   - Tone: Professional, conversational, thought-leadership

3. **TWITTER THREAD** (8-12 tweets):
   - Tweet 1: Hook + thread overview (include "🧵 Thread:")
   - Tweets 2-10: One key insight per tweet, numbered (2/12, 3/12, etc.)
   - Use emojis strategically for visual appeal
   - Each tweet must be under 280 characters
   - Final tweet: Conclusion + relevant hashtags
   - Tone: Concise, engaging, insightful

For each platform, use format_for_platform() to ensure proper formatting.

Important:
- Reference specific papers/sources naturally in the content
- Maintain scientific accuracy while being engaging
- Build author's credibility by demonstrating deep understanding
- Make content shareable and valuable

Output format:
=== BLOG ARTICLE ===
[Full blog content]

=== LINKEDIN POST ===
[Full LinkedIn content]

=== TWITTER THREAD ===
[Full Twitter thread]
""",
        tools=[format_for_platform],
        output_key="generated_content",
    )


def create_linkedin_optimization_agent() -> LlmAgent:
    """Create the LinkedInOptimizationAgent that optimizes content for opportunities.

    The LinkedInOptimizationAgent is responsible for:
    - Optimizing LinkedIn content for SEO and recruiter visibility
    - Adding engagement hooks and calls-to-action
    - Integrating portfolio mentions naturally
    - Emphasizing business value and practical impact
    - Positioning author as expert/consultant

    Returns:
        LlmAgent configured for LinkedIn optimization
    """
    return LlmAgent(
        name="LinkedInOptimizationAgent",
        model=Gemini(model=DEFAULT_MODEL, retry_options=RETRY_CONFIG),
        description="Optimizes content for professional opportunities and recruiter visibility",
        instruction="""You are a LinkedIn optimization specialist focused on career opportunities.

You will receive:
- Research findings: {research_findings}
- Content strategy: {content_strategy}
- Generated content: {generated_content}

Your mission: Optimize the LINKEDIN POST ONLY to maximize professional opportunities.

**Optimization Tasks**:

1. **SEO Optimization** (use generate_seo_keywords tool):
   - Add keywords recruiters search for (AI Consultant, ML Engineer, etc.)
   - Include hot technical skills (PyTorch, TensorFlow, LangChain, etc.)
   - Weave keywords naturally into the post

2. **Engagement Hooks** (use create_engagement_hooks tool):
   - Start with a compelling hook that stops scrolling
   - End with a strong call-to-action inviting connections
   - Add 1-2 questions that spark discussion
   - Include invitation to DM for collaboration

3. **Portfolio Integration**:
   - Naturally mention relevant projects or experience
   - Reference GitHub, Kaggle, or specific work (if mentioned in context)
   - Use phrases like "In my recent project..." or "While building..."
   - Don't force it if not relevant

4. **Business Value Focus**:
   - Emphasize practical impact over pure theory
   - Use business language: ROI, scale, production, results
   - Show how research translates to real-world solutions
   - Position as consultant/expert who solves problems

5. **Professional Positioning**:
   - Use confident, authoritative tone
   - Demonstrate deep expertise
   - Show thought leadership
   - Subtly signal availability for opportunities

6. **Industry Trends** (use search_industry_trends if helpful):
   - Connect content to current market demands
   - Mention pain points companies face
   - Show awareness of hiring trends

**Optimization Guidelines**:
- Keep length 300-800 words
- Use line breaks for readability
- Include 1-2 emojis strategically (optional based on tone)
- Add 3-5 relevant hashtags at the end
- Make it scannable (use bold or bullet points if helpful)

Output ONLY the optimized LinkedIn post:
=== OPTIMIZED LINKEDIN POST ===
[Your optimized post with SEO, hooks, portfolio mentions, and strong CTA]
""",
        tools=[
            generate_seo_keywords,
            create_engagement_hooks,
            search_industry_trends,
        ],
        output_key="optimized_linkedin",
    )


def create_review_agent() -> LlmAgent:
    """Create the ReviewAgent that verifies claims and adds citations.

    The ReviewAgent is responsible for:
    - Verifying scientific accuracy
    - Adding proper citations
    - Checking tone and credibility
    - Ensuring platform-appropriate formatting
    - Final quality assurance

    Returns:
        LlmAgent configured for content review
    """
    return LlmAgent(
        name=REVIEW_AGENT_NAME,
        model=Gemini(model=DEFAULT_MODEL, retry_options=RETRY_CONFIG),
        description="Reviews content for accuracy, adds citations, and ensures quality",
        instruction="""You are a scientific content reviewer ensuring accuracy, credibility, and opportunity appeal.

You will receive:
- Research findings with sources: {research_findings}
- Generated content for all platforms: {generated_content}
- Optimized LinkedIn post: {optimized_linkedin}

Your tasks:

1. **Verify Scientific Accuracy**:
   - Check that claims match the research findings
   - Ensure no overstatements or misleading interpretations
   - Verify technical terminology is used correctly

2. **Add Proper Citations**:
   - Use generate_citations() to create formatted citations from sources
   - Add inline citations where claims reference specific papers
   - Create a complete references section for the blog
   - Add source links to LinkedIn and Twitter where appropriate

3. **Review Quality**:
   - Check that tone is appropriate for each platform
   - Ensure content builds author's credibility
   - Verify engaging hooks and calls-to-action
   - Check formatting (headings, line breaks, character limits)

4. **Opportunity Analysis** (use analyze_content_for_opportunities):
   - Score the optimized LinkedIn post for opportunity appeal
   - Provide actionable suggestions for improvement
   - Ensure SEO keywords are present
   - Verify engagement hooks are strong

5. **Final Polish**:
   - Fix any grammar or style issues
   - Ensure consistency across platforms
   - Verify all hashtags are relevant
   - Check that Twitter thread stays under character limits

Output the FINAL POLISHED CONTENT for all three platforms with citations and scores.

Format:
=== FINAL BLOG ARTICLE ===
[Blog with inline citations and references section]

=== FINAL LINKEDIN POST ===
[Use the optimized LinkedIn post, with any final improvements]

=== FINAL TWITTER THREAD ===
[Twitter thread with relevant citations]

=== CITATIONS ===
[Complete formatted citations for all sources]

=== OPPORTUNITY ANALYSIS ===
**Opportunity Score**: X/100
**SEO Score**: X/100
**Engagement Score**: X/100
**Suggestions**: [Key recommendations for improvement]
""",
        tools=[generate_citations, analyze_content_for_opportunities],
        output_key="final_content",
    )


def create_content_generation_pipeline() -> SequentialAgent:
    """Create the complete content generation pipeline.

    The pipeline runs agents in sequence:
    1. ResearchAgent: Find papers and trends
    2. StrategyAgent: Plan content approach
    3. ContentGeneratorAgent: Create drafts
    4. LinkedInOptimizationAgent: Optimize LinkedIn for opportunities
    5. ReviewAgent: Verify, polish, and score

    Design decision: We use SequentialAgent (not ParallelAgent) because each agent
    depends on the outputs of previous agents. The state flows linearly through
    the pipeline via the output_key/placeholder pattern, where each agent's
    output_key becomes available as {placeholder} for subsequent agents.

    The 5-agent architecture balances specialization with maintainability:
    - Research: Academic credibility through paper sources
    - Strategy: Professional positioning and audience targeting
    - Content: Platform-specific format optimization
    - LinkedIn: Opportunity generation (SEO, engagement, portfolio)
    - Review: Quality assurance and scoring

    Returns:
        SequentialAgent orchestrating the complete workflow
    """
    # Create all specialized agents
    research_agent = create_research_agent()
    strategy_agent = create_strategy_agent()
    content_agent = create_content_generator_agent()
    linkedin_optimizer = create_linkedin_optimization_agent()
    review_agent = create_review_agent()

    # Design decision: Order matters! Each agent builds on previous outputs.
    # Do not reorder without updating placeholder references in instructions.
    return SequentialAgent(
        name=ROOT_AGENT_NAME,
        description="Complete scientific content generation system with professional opportunity optimization",
        sub_agents=[
            research_agent,
            strategy_agent,
            content_agent,
            linkedin_optimizer,
            review_agent,
        ],
    )