Spaces:
Sleeping
Sleeping
File size: 31,729 Bytes
a8a231d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 |
"""Custom tools for the content generation agent system."""
import xml.etree.ElementTree as ET
from typing import Any
import requests
from duckduckgo_search import DDGS
def search_papers(topic: str, max_results: int = 5) -> dict[str, Any]:
"""Search for academic papers and research articles on a given topic.
This tool searches for recent academic papers, research articles, and
scientific publications related to the specified topic. It provides
summaries and links to help build credible, research-backed content.
Args:
topic: The research topic or subject to search for (e.g., "machine learning interpretability")
max_results: Maximum number of papers to return (default: 5)
Returns:
A dictionary containing:
- status: "success" or "error"
- papers: List of paper dictionaries with title, authors, summary, link
- error_message: Error description if status is "error"
"""
try:
# Use arXiv API for academic papers
# Format: http://export.arxiv.org/api/query?search_query=all:{topic}&max_results={max_results}
base_url = "http://export.arxiv.org/api/query"
params = {
"search_query": f"all:{topic}",
"max_results": max_results,
"sortBy": "submittedDate",
"sortOrder": "descending",
}
response = requests.get(base_url, params=params, timeout=10)
response.raise_for_status()
# Parse XML response using proper XML parser
# Design decision: We use ElementTree instead of string parsing for robustness
# and proper handling of XML namespaces, encoding, and malformed entries.
try:
root = ET.fromstring(response.content)
except ET.ParseError as e:
return {
"status": "error",
"error_message": f"Failed to parse arXiv XML response: {str(e)}",
}
# arXiv API uses Atom namespace
namespace = {"atom": "http://www.w3.org/2005/Atom"}
# Extract papers from XML entries
papers = []
entries = root.findall("atom:entry", namespace)
for entry in entries[:max_results]:
try:
# Extract title (remove extra whitespace and newlines)
title_elem = entry.find("atom:title", namespace)
title = (
" ".join(title_elem.text.strip().split())
if title_elem is not None
else "Untitled"
)
# Extract summary (limit to 300 chars for readability)
summary_elem = entry.find("atom:summary", namespace)
if summary_elem is not None:
summary = " ".join(summary_elem.text.strip().split())
summary = summary[:300] + ("..." if len(summary) > 300 else "")
else:
summary = "No summary available"
# Extract paper ID/link
id_elem = entry.find("atom:id", namespace)
link = id_elem.text.strip() if id_elem is not None else ""
# Extract authors (first 3 authors for brevity)
authors = []
author_elems = entry.findall("atom:author", namespace)
for author_elem in author_elems[:3]:
name_elem = author_elem.find("atom:name", namespace)
if name_elem is not None:
authors.append(name_elem.text.strip())
papers.append(
{
"title": title,
"authors": ", ".join(authors) if authors else "Unknown",
"summary": summary,
"link": link,
}
)
except Exception:
# Skip malformed entries but continue processing
continue
if not papers:
return {"status": "error", "error_message": f"No papers found for topic: {topic}"}
return {"status": "success", "papers": papers, "count": len(papers)}
except requests.RequestException as e:
return {"status": "error", "error_message": f"Failed to search papers: {str(e)}"}
except Exception as e:
return {"status": "error", "error_message": f"Unexpected error: {str(e)}"}
def search_web(query: str, max_results: int = 5) -> dict[str, Any]:
"""Search the web for information using DuckDuckGo.
Use this tool to find:
- Recent news and industry trends
- Blog posts and technical articles
- Company information and market data
- Real-world examples and case studies
Args:
query: The search query
max_results: Maximum number of results to return (default: 5)
Returns:
A dictionary containing:
- status: "success" or "error"
- results: List of search results (title, link, snippet)
- error_message: Error description if status is "error"
"""
try:
with DDGS() as ddgs:
results = list(ddgs.text(query, max_results=max_results))
if not results:
return {"status": "success", "results": [], "count": 0}
formatted_results = []
for r in results:
formatted_results.append(
{
"title": r.get("title", ""),
"link": r.get("href", ""),
"snippet": r.get("body", ""),
}
)
return {"status": "success", "results": formatted_results, "count": len(formatted_results)}
except Exception as e:
return {"status": "error", "error_message": f"Web search error: {str(e)}"}
def format_for_platform(content: str, platform: str, topic: str = "") -> dict[str, Any]:
"""Format content appropriately for different social media platforms.
Adjusts content length, structure, and style based on platform requirements:
- Blog: Long-form, structured with headings (1000-2000 words)
- LinkedIn: Professional, medium-length with key takeaways (300-800 words)
- Twitter: Concise thread format, engaging hooks (280 chars per tweet)
Args:
content: The raw content to format
platform: Target platform ("blog", "linkedin", or "twitter")
topic: Optional topic for context (used for hashtags, etc.)
Returns:
A dictionary containing:
- status: "success" or "error"
- formatted_content: Platform-optimized content
- metadata: Platform-specific metadata (hashtags, structure, etc.)
- error_message: Error description if status is "error"
"""
try:
platform = platform.lower()
if platform not in ["blog", "linkedin", "twitter"]:
return {
"status": "error",
"error_message": f"Unsupported platform: {platform}. Use 'blog', 'linkedin', or 'twitter'.",
}
metadata = {}
if platform == "blog":
# Blog: Add structure with markdown
metadata = {
"format": "markdown",
"target_length": "1000-2000 words",
"structure": "Title β Introduction β Main sections with H2/H3 β Conclusion β References",
}
formatted = f"""# {topic if topic else "Article Title"}
{content}
## References
[Add citations here]
"""
elif platform == "linkedin":
# LinkedIn: Professional tone with emojis and key takeaways
metadata = {
"format": "plain text with limited formatting",
"target_length": "300-800 words",
"best_practices": "Start with hook, use line breaks, end with call-to-action",
}
# Add structure
formatted = f"""π¬ {topic if topic else "Professional Insight"}
{content}
π‘ Key Takeaways:
[Summarize 3-5 bullet points]
What are your thoughts? Share in the comments below! π
#Research #Science #Innovation
"""
elif platform == "twitter":
# Twitter: Break into thread
metadata = {
"format": "thread (multiple tweets)",
"target_length": "280 characters per tweet",
"best_practices": "Number tweets (1/n), use hooks, add relevant hashtags",
}
# Basic thread structure
formatted = f"""π§΅ Thread: {topic if topic else "Key Insights"}
1/π§΅ {content[:250]}...
[Continue thread - AI will expand this into full thread]
#Research #Science
"""
return {
"status": "success",
"formatted_content": formatted,
"platform": platform,
"metadata": metadata,
}
except Exception as e:
return {"status": "error", "error_message": f"Formatting error: {str(e)}"}
def generate_citations(sources: list[dict[str, str]], style: str = "apa") -> dict[str, Any]:
"""Generate properly formatted citations from source information.
Creates academic-style citations from paper/article metadata to ensure
content credibility and proper attribution.
Args:
sources: List of source dictionaries with keys: title, authors, link, year (optional)
style: Citation style ("apa", "mla", or "chicago") - default is "apa"
Returns:
A dictionary containing:
- status: "success" or "error"
- citations: List of formatted citation strings
- inline_format: Example of how to cite inline
- error_message: Error description if status is "error"
"""
try:
if not sources:
return {"status": "error", "error_message": "No sources provided for citation"}
style = style.lower()
if style not in ["apa", "mla", "chicago"]:
style = "apa" # Default to APA
citations = []
for i, source in enumerate(sources, 1):
title = source.get("title", "Untitled")
authors = source.get("authors", "Unknown")
link = source.get("link", "")
year = source.get("year", "n.d.")
if style == "apa":
# APA: Authors (Year). Title. Retrieved from URL
citation = f"{authors} ({year}). {title}. {link}"
elif style == "mla":
# MLA: Authors. "Title." Web. URL
citation = f'{authors}. "{title}." Web. {link}'
else: # chicago
# Chicago: Authors. "Title." Accessed URL
citation = f'{authors}. "{title}." {link}'
citations.append(f"[{i}] {citation}")
inline_format = {"apa": "(Author, Year)", "mla": "(Author)", "chicago": "(Author Year)"}
return {
"status": "success",
"citations": citations,
"style": style,
"inline_format": inline_format.get(style, "(Author, Year)"),
"count": len(citations),
}
except Exception as e:
return {"status": "error", "error_message": f"Citation generation error: {str(e)}"}
def extract_key_findings(research_text: str, max_findings: int = 5) -> dict[str, Any]:
"""Extract key findings and insights from research text.
Parses research summaries to identify the most important findings,
conclusions, and actionable insights for content creation.
Args:
research_text: Raw research text to analyze
max_findings: Maximum number of key findings to extract (default: 5)
Returns:
A dictionary containing:
- status: "success" or "error"
- findings: List of key finding strings
- summary: Brief overall summary
- error_message: Error description if status is "error"
"""
try:
if not research_text or len(research_text.strip()) < 50:
return {"status": "error", "error_message": "Insufficient research text provided"}
# Simple keyword-based extraction (in production, use NLP/LLM)
sentences = research_text.replace("\n", " ").split(". ")
# Look for sentences with key indicator words
indicators = [
"found",
"discovered",
"showed",
"demonstrated",
"revealed",
"concluded",
"suggests",
"indicates",
"proves",
"confirms",
"important",
"significant",
"key",
"main",
"primary",
]
findings = []
for sentence in sentences:
sentence = sentence.strip()
if any(indicator in sentence.lower() for indicator in indicators):
findings.append(sentence if sentence.endswith(".") else sentence + ".")
if len(findings) >= max_findings:
break
# If not enough findings, take first few substantial sentences
if len(findings) < max_findings:
for sentence in sentences:
sentence = sentence.strip()
if len(sentence) > 30 and sentence not in findings:
findings.append(sentence if sentence.endswith(".") else sentence + ".")
if len(findings) >= max_findings:
break
summary = f"Analysis of research text identified {len(findings)} key findings and insights."
return {
"status": "success",
"findings": findings[:max_findings],
"summary": summary,
"count": len(findings[:max_findings]),
}
except Exception as e:
return {"status": "error", "error_message": f"Key finding extraction error: {str(e)}"}
def search_industry_trends(
field: str, region: str = "global", max_results: int = 5
) -> dict[str, Any]:
"""Search for industry trends, job market demands, and hiring patterns in AI/ML.
Identifies what companies are looking for, hot skills in demand, and
industry pain points that professionals can address. Useful for aligning
content with market opportunities.
Args:
field: The AI/ML field to analyze (e.g., "Machine Learning", "NLP", "Computer Vision")
region: Geographic region for job market analysis (default: "global")
max_results: Maximum number of trends to return (default: 5)
Returns:
A dictionary containing:
- status: "success" or "error"
- trends: List of current industry trends and demands
- hot_skills: Technologies/frameworks in high demand
- pain_points: Common business challenges to address
- error_message: Error description if status is "error"
"""
try:
# Use search_web to find real trends
search_query = f"latest trends in {field} {region} {2024}"
# We'll use the newly created search_web function
# Note: In a real circular dependency scenario, we might need to handle imports differently,
# but here they are in the same file.
search_results = search_web(search_query, max_results=max_results)
if search_results.get("status") == "error":
return search_results
results = search_results.get("results", [])
trends = []
for r in results:
trends.append(f"{r['title']}: {r['snippet']}")
if not trends:
# Fallback if search fails to return good results
trends = [
f"Growing demand for {field} expertise in {region}",
f"Companies seeking production-ready {field} solutions",
"Emphasis on practical implementation over pure research",
]
# Basic skill mapping is still useful as a baseline
skill_mapping = {
"machine learning": ["PyTorch", "TensorFlow", "Scikit-learn", "MLflow", "Kubeflow"],
"nlp": ["Transformers", "LangChain", "OpenAI API", "HuggingFace", "spaCy"],
"computer vision": ["OpenCV", "YOLO", "SAM", "Detectron2", "PIL"],
"llm": ["LangChain", "LlamaIndex", "Vector Databases", "Prompt Engineering", "RAG"],
"mlops": ["MLflow", "Kubeflow", "Docker", "Kubernetes", "AWS SageMaker"],
}
field_lower = field.lower()
hot_skills = []
for key in skill_mapping:
if key in field_lower:
hot_skills.extend(skill_mapping[key][:3])
if not hot_skills:
hot_skills = ["Python", "PyTorch", "Cloud Platforms", "API Development"]
pain_points = [
f"Difficulty finding experienced {field} professionals",
f"Bridging gap between research papers and production code in {field}",
f"Scaling {field} solutions from prototype to enterprise",
f"Explaining ROI of {field} investments to executives",
f"Maintaining and monitoring {field} systems in production",
]
return {
"status": "success",
"trends": trends[:max_results],
"hot_skills": list(set(hot_skills)),
"pain_points": pain_points[:max_results],
"region": region,
"field": field,
}
except Exception as e:
return {"status": "error", "error_message": f"Industry trends search error: {str(e)}"}
def generate_seo_keywords(topic: str, role: str = "AI Consultant") -> dict[str, Any]:
"""Generate LinkedIn SEO keywords that recruiters search for.
Creates role-specific keywords and technology terms that improve
visibility in recruiter searches and LinkedIn's algorithm.
Args:
topic: The content topic or expertise area
role: Target professional role (e.g., "AI Consultant", "ML Engineer")
Returns:
A dictionary containing:
- status: "success" or "error"
- primary_keywords: Main role-based keywords
- technical_keywords: Technology and framework terms
- action_keywords: Skill-based action verbs
- combined_phrases: Optimized keyword combinations
- error_message: Error description if status is "error"
"""
try:
# Role-based keywords
role_keywords = {
"consultant": ["AI Consultant", "ML Consultant", "AI Strategy", "Technical Advisor"],
"engineer": ["ML Engineer", "AI Engineer", "Machine Learning Engineer"],
"specialist": ["AI Specialist", "ML Specialist", "Data Science Specialist"],
"expert": ["AI Expert", "ML Expert", "Subject Matter Expert"],
"architect": ["AI Architect", "ML Architect", "Solutions Architect"],
}
role_lower = role.lower()
primary_keywords = [role]
for key in role_keywords:
if key in role_lower:
primary_keywords.extend(role_keywords[key][:2])
# Technical keywords based on topic
technical_keywords = []
topic_lower = topic.lower()
tech_mapping = {
"language": ["NLP", "LLM", "Transformers", "GPT", "BERT"],
"vision": ["Computer Vision", "CNN", "Object Detection", "Image Recognition"],
"learning": ["Deep Learning", "Neural Networks", "PyTorch", "TensorFlow"],
"agent": ["AI Agents", "Multi-Agent Systems", "LangChain", "Autonomous Systems"],
"data": ["Data Science", "Feature Engineering", "Model Training"],
}
for key in tech_mapping:
if key in topic_lower:
technical_keywords.extend(tech_mapping[key][:3])
if not technical_keywords:
technical_keywords = ["Machine Learning", "Artificial Intelligence", "Python"]
# Action keywords (skills)
action_keywords = [
"AI Development",
"Model Deployment",
"MLOps",
"Production ML",
"Algorithm Design",
"Technical Leadership",
"AI Strategy",
]
# Combined optimized phrases
combined_phrases = [
f"{primary_keywords[0]} | {technical_keywords[0]}",
f"Expert in {technical_keywords[0]} and {technical_keywords[1] if len(technical_keywords) > 1 else 'ML'}",
f"{action_keywords[0]} | {action_keywords[1]}",
]
return {
"status": "success",
"primary_keywords": list(set(primary_keywords))[:5],
"technical_keywords": list(set(technical_keywords))[:5],
"action_keywords": action_keywords[:5],
"combined_phrases": combined_phrases,
"total_keywords": len(set(primary_keywords + technical_keywords + action_keywords)),
}
except Exception as e:
return {"status": "error", "error_message": f"SEO keyword generation error: {str(e)}"}
def create_engagement_hooks(topic: str, goal: str = "opportunities") -> dict[str, Any]:
"""Create engagement hooks that invite professional connections and opportunities.
Generates calls-to-action, questions, and portfolio mentions that
encourage recruiters and potential clients to connect.
Args:
topic: The content topic
goal: Content goal ("opportunities", "discussion", "credibility", "visibility")
Returns:
A dictionary containing:
- status: "success" or "error"
- opening_hooks: Attention-grabbing opening lines
- closing_ctas: Strong calls-to-action
- discussion_questions: Questions that spark engagement
- portfolio_prompts: Ways to mention your work
- error_message: Error description if status is "error"
"""
try:
goal = goal.lower()
# Opening hooks based on goal
opening_hooks = {
"opportunities": [
f"Working with companies on {topic}? Here's what I've learned...",
f"After implementing {topic} for multiple clients, one thing is clear:",
f"Most {topic} projects fail because of this one mistake:",
],
"discussion": [
f"Hot take on {topic}:",
f"Here's what nobody tells you about {topic}:",
f"The {topic} landscape just shifted. Here's why it matters:",
],
"credibility": [
f"Deep dive into {topic} based on hands-on experience:",
f"Technical breakdown of {topic} that actually works in production:",
f"What I learned implementing {topic} at scale:",
],
"visibility": [
f"π₯ {topic} is evolving faster than ever. Here's what you need to know:",
f"Everyone's talking about {topic}, but here's what they're missing:",
f"3 things about {topic} that changed how I work:",
],
}
# Closing CTAs based on goal
closing_ctas = {
"opportunities": [
"Looking to implement this in your organization? Let's connect and discuss your needs.",
"Need help with your {topic} project? DM me to explore collaboration.",
"Building something similar? I'd love to hear about your approach. Drop a comment or message me.",
],
"discussion": [
"What's your take on this? Agree or disagree? Let's discuss in the comments!",
"Have you encountered this in your work? Share your experience below.",
"Curious how this applies to your use case? Let's chat!",
],
"credibility": [
"Want to dive deeper into the technical details? Connect with me.",
"Questions about the implementation? Happy to share insights.",
"Follow for more technical deep-dives on {topic}.",
],
"visibility": [
"π Follow for more insights on {topic} and AI/ML trends.",
"π Repost if you found this valuable. Tag someone who needs to see this.",
"π¬ What would you add to this list? Comment below!",
],
}
# Discussion questions
discussion_questions = [
f"What's been your biggest challenge with {topic}?",
f"Are you seeing similar trends with {topic} in your industry?",
f"Which aspect of {topic} should I cover next?",
f"What's your hot take on the future of {topic}?",
f"Have you tried implementing {topic}? What were your results?",
]
# Portfolio prompts
portfolio_prompts = [
f"In my recent project on {topic}, I discovered...",
f"While building a {topic} solution, here's what worked:",
f"My open-source work on {topic} taught me...",
f"Check out my GitHub for {topic} implementations that...",
f"Drawing from my Kaggle competition on {topic}...",
]
return {
"status": "success",
"opening_hooks": opening_hooks.get(goal, opening_hooks["credibility"])[:3],
"closing_ctas": [
cta.replace("{topic}", topic)
for cta in closing_ctas.get(goal, closing_ctas["opportunities"])[:3]
],
"discussion_questions": discussion_questions[:3],
"portfolio_prompts": portfolio_prompts[:3],
"goal": goal,
}
except Exception as e:
return {"status": "error", "error_message": f"Engagement hook creation error: {str(e)}"}
def analyze_content_for_opportunities(
content: str, target_role: str = "AI Consultant"
) -> dict[str, Any]:
"""Analyze content for recruiter appeal and opportunity generation potential.
Scores content based on factors that attract professional opportunities:
SEO keywords, engagement hooks, portfolio mentions, and business value.
Args:
content: The content to analyze
target_role: Target professional role for scoring
Returns:
A dictionary containing:
- status: "success" or "error"
- opportunity_score: Overall score (0-100)
- seo_score: SEO keyword presence (0-100)
- engagement_score: Engagement hook effectiveness (0-100)
- value_score: Business value communication (0-100)
- suggestions: List of improvement suggestions
- error_message: Error description if status is "error"
"""
try:
if not content or len(content) < 100:
return {
"status": "error",
"error_message": "Content too short for meaningful analysis (minimum 100 characters)",
}
content_lower = content.lower()
# SEO keyword scoring
# Design decision: We check for both role-based keywords (consultant, engineer)
# and technical terms (PyTorch, TensorFlow) because recruiters search using both.
# The multiplier of 200 ensures that hitting ~50% of keywords gives a good score.
seo_keywords = [
"ai",
"machine learning",
"ml",
"deep learning",
"neural network",
"python",
"tensorflow",
"pytorch",
"consulting",
"engineer",
"architect",
"specialist",
"expert",
]
seo_hits = sum(1 for keyword in seo_keywords if keyword in content_lower)
seo_score = min(100, (seo_hits / len(seo_keywords)) * 200)
# Engagement hooks scoring
# Design decision: We look for calls-to-action, questions, and invitation words
# because these are proven to increase LinkedIn engagement and prompt connections.
# Target of 5 indicators gives 100 score - this is based on LinkedIn best practices.
engagement_indicators = [
"?",
"let's",
"connect",
"dm",
"message",
"discuss",
"share",
"comment",
"what's your",
"have you",
"follow",
]
engagement_hits = sum(
1 for indicator in engagement_indicators if indicator in content_lower
)
engagement_score = min(100, (engagement_hits / 5) * 100)
# Business value scoring
# Design decision: Recruiters and clients care about business outcomes, not just tech.
# We prioritize words that show real-world impact and problem-solving ability.
# This distinguishes professional content from purely academic content.
value_indicators = [
"production",
"scale",
"roi",
"business",
"solution",
"impact",
"results",
"improve",
"optimize",
"problem",
"challenge",
]
value_hits = sum(1 for indicator in value_indicators if indicator in content_lower)
value_score = min(100, (value_hits / 5) * 100)
# Portfolio mention detection
# Design decision: Mentioning projects demonstrates hands-on experience.
# This is critical for converting interest into opportunities.
# We use a lower threshold (3 mentions = 100) since portfolios are mentioned sparingly.
portfolio_indicators = ["project", "github", "kaggle", "built", "developed", "implemented"]
portfolio_mentions = sum(
1 for indicator in portfolio_indicators if indicator in content_lower
)
portfolio_score = min(100, (portfolio_mentions / 3) * 100)
# Calculate overall opportunity score
# Design decision: Weighted scoring gives highest priority to SEO and engagement (30% each)
# because these directly impact visibility and connection rate. Business value (25%) and
# portfolio (15%) are supporting factors. This weighting was designed based on LinkedIn's
# algorithm priorities and recruiter behavior patterns.
opportunity_score = int(
seo_score * 0.3 + engagement_score * 0.3 + value_score * 0.25 + portfolio_score * 0.15
)
# Generate suggestions
suggestions = []
if seo_score < 50:
suggestions.append(
f"Add more {target_role} keywords and technical terms for better visibility"
)
if engagement_score < 50:
suggestions.append(
"Include stronger calls-to-action and questions to invite connections"
)
if value_score < 50:
suggestions.append("Emphasize business value and practical impact over pure theory")
if portfolio_mentions == 0:
suggestions.append(
"Mention your projects or portfolio to demonstrate hands-on expertise"
)
if len(content) < 300:
suggestions.append(
"Consider expanding content for better engagement (aim for 300+ words)"
)
return {
"status": "success",
"opportunity_score": opportunity_score,
"seo_score": int(seo_score),
"engagement_score": int(engagement_score),
"value_score": int(value_score),
"portfolio_score": int(portfolio_score),
"suggestions": suggestions
if suggestions
else ["Content looks great for opportunities!"],
"grade": "Excellent"
if opportunity_score >= 80
else "Good"
if opportunity_score >= 60
else "Needs Improvement",
}
except Exception as e:
return {"status": "error", "error_message": f"Content analysis error: {str(e)}"}
|