Spaces:
Sleeping
Sleeping
File size: 32,003 Bytes
a8a231d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 |
"""Gradio web interface for the Scientific Content Generation Agent."""
import asyncio
import json
from typing import Any, Dict, List, Optional, Tuple
import gradio as gr
import pandas as pd
from main import run_content_generation
from src.config import CITATION_STYLE, DEFAULT_MODEL, MAX_PAPERS_PER_SEARCH, SUPPORTED_PLATFORMS
from src.profile import (
DEFAULT_PROFILE,
PROFILE_PATH,
UserProfile,
load_user_profile,
save_profile_to_yaml,
)
from src.session_manager import delete_session, get_session_info, list_sessions
# ============================================================================
# Tab 1: Content Generation
# ============================================================================
async def async_generate_with_progress(
topic: str,
platforms: List[str],
tone: str,
audience: str,
session_id: str,
progress: gr.Progress = gr.Progress(),
) -> str:
"""Generate content with progress tracking.
Args:
topic: Research topic
platforms: List of platforms (Blog, LinkedIn, Twitter)
tone: Content tone
audience: Target audience
session_id: Optional session ID to resume
progress: Gradio progress tracker
Returns:
Generated content as formatted string
"""
try:
# Validate inputs
if not topic or not topic.strip():
return "β Error: Please enter a topic."
if not platforms:
return "β Error: Please select at least one platform."
# Convert UI platform names to internal format
platform_map = {"Blog": "blog", "LinkedIn": "linkedin", "Twitter": "twitter"}
platforms_internal = [platform_map[p] for p in platforms]
# Build preferences
preferences = {
"platforms": platforms_internal,
"tone": tone,
"target_audience": audience if audience.strip() else "researchers and professionals",
}
# Use session ID if provided
session = session_id.strip() if session_id and session_id.strip() else None
# Progress tracking with fixed milestones
progress(0.0, desc="π Initializing agent pipeline...")
await asyncio.sleep(0.5) # Brief pause for UI feedback
progress(0.1, desc="π¬ ResearchAgent: Searching academic papers and trends...")
# Run the actual content generation (2-5 minutes)
# We can't track real progress without hooking into ADK events, so we'll use milestones
# Start the generation in a separate task so we can update progress
generation_task = asyncio.create_task(run_content_generation(topic, preferences, session))
# Simulate progress while generation runs
# These are approximate milestones based on agent pipeline
milestones = [
(0.2, "π― StrategyAgent: Planning content strategy..."),
(0.4, "βοΈ ContentGeneratorAgent: Creating content..."),
(0.7, "π LinkedInOptimizationAgent: Optimizing for opportunities..."),
(0.85, "β
ReviewAgent: Final review and citations..."),
]
# Update progress while waiting for completion
for milestone_progress, desc in milestones:
# Check if generation is complete
if generation_task.done():
break
progress(milestone_progress, desc=desc)
# Wait a bit before next milestone (total ~30 seconds for progress updates)
await asyncio.sleep(7)
# Wait for generation to complete
result = await generation_task
progress(1.0, desc="β
Generation complete!")
# Format the result nicely
if result and isinstance(result, str):
return f"""# Content Generation Complete! π
{result}
---
πΎ Content saved to output directory
π Session ID: {session or "New session created"}
"""
else:
return "β
Content generation completed. Check the logs for details."
except Exception as e:
error_msg = f"β Error during content generation: {str(e)}"
print(error_msg)
import traceback
traceback.print_exc()
return error_msg
def generate_content_sync(
topic: str, platforms: List[str], tone: str, audience: str, session_id: str
) -> str:
"""Synchronous wrapper for async content generation.
This is needed because Gradio requires sync functions unless we use .then() chaining.
"""
return asyncio.run(async_generate_with_progress(topic, platforms, tone, audience, session_id))
# ============================================================================
# Tab 2: Profile Editor
# ============================================================================
def load_profile_ui() -> Tuple:
"""Load current profile for form population.
Returns:
Tuple of all profile field values in form order
"""
try:
profile = load_user_profile(validate=False)
return (
profile.name,
profile.target_role,
", ".join(profile.expertise_areas),
", ".join(profile.content_goals),
profile.region,
", ".join(profile.languages),
", ".join(profile.target_industries),
profile.github_username,
profile.linkedin_url,
profile.portfolio_url,
profile.kaggle_username,
json.dumps(profile.notable_projects, indent=2),
", ".join(profile.primary_skills),
profile.content_tone,
profile.use_emojis,
profile.posting_frequency,
profile.unique_value_proposition,
", ".join(profile.key_differentiators),
"β
Profile loaded successfully!",
)
except Exception as e:
return (
DEFAULT_PROFILE.name,
DEFAULT_PROFILE.target_role,
", ".join(DEFAULT_PROFILE.expertise_areas),
", ".join(DEFAULT_PROFILE.content_goals),
DEFAULT_PROFILE.region,
", ".join(DEFAULT_PROFILE.languages),
", ".join(DEFAULT_PROFILE.target_industries),
DEFAULT_PROFILE.github_username,
DEFAULT_PROFILE.linkedin_url,
DEFAULT_PROFILE.portfolio_url,
DEFAULT_PROFILE.kaggle_username,
json.dumps(DEFAULT_PROFILE.notable_projects, indent=2),
", ".join(DEFAULT_PROFILE.primary_skills),
DEFAULT_PROFILE.content_tone,
DEFAULT_PROFILE.use_emojis,
DEFAULT_PROFILE.posting_frequency,
DEFAULT_PROFILE.unique_value_proposition,
", ".join(DEFAULT_PROFILE.key_differentiators),
f"β οΈ Error loading profile: {str(e)}. Showing defaults.",
)
def validate_profile_ui(
name: str,
target_role: str,
expertise_areas: str,
content_goals: str,
region: str,
languages: str,
target_industries: str,
github: str,
linkedin: str,
portfolio: str,
kaggle: str,
projects_json: str,
skills: str,
tone: str,
emojis: bool,
frequency: str,
uvp: str,
differentiators: str,
) -> str:
"""Validate profile fields without saving.
Returns:
Validation result message
"""
try:
# Parse list fields
expertise_list = [x.strip() for x in expertise_areas.split(",") if x.strip()]
goals_list = [x.strip() for x in content_goals.split(",") if x.strip()]
languages_list = [x.strip() for x in languages.split(",") if x.strip()]
industries_list = [x.strip() for x in target_industries.split(",") if x.strip()]
skills_list = [x.strip() for x in skills.split(",") if x.strip()]
diff_list = [x.strip() for x in differentiators.split(",") if x.strip()]
# Parse projects JSON
try:
projects = json.loads(projects_json) if projects_json.strip() else []
except json.JSONDecodeError as e:
return f"β Invalid JSON in Notable Projects: {str(e)}"
# Create profile object
profile = UserProfile(
name=name,
target_role=target_role,
expertise_areas=expertise_list,
content_goals=goals_list,
region=region,
languages=languages_list,
target_industries=industries_list,
github_username=github,
linkedin_url=linkedin,
portfolio_url=portfolio,
kaggle_username=kaggle,
notable_projects=projects,
primary_skills=skills_list,
content_tone=tone,
use_emojis=emojis,
posting_frequency=frequency,
unique_value_proposition=uvp,
key_differentiators=diff_list,
)
# Validate
validation = profile.validate()
if validation["errors"]:
error_msg = "β Validation Errors:\n" + "\n".join(
f" β’ {err}" for err in validation["errors"]
)
if validation["warnings"]:
error_msg += "\n\nβ οΈ Warnings:\n" + "\n".join(
f" β’ {warn}" for warn in validation["warnings"]
)
return error_msg
if validation["warnings"]:
return "β οΈ Validation Warnings:\n" + "\n".join(
f" β’ {warn}" for warn in validation["warnings"]
)
return "β
Profile is valid!"
except Exception as e:
return f"β Validation error: {str(e)}"
def save_profile_ui(
name: str,
target_role: str,
expertise_areas: str,
content_goals: str,
region: str,
languages: str,
target_industries: str,
github: str,
linkedin: str,
portfolio: str,
kaggle: str,
projects_json: str,
skills: str,
tone: str,
emojis: bool,
frequency: str,
uvp: str,
differentiators: str,
) -> str:
"""Save profile to YAML file.
Returns:
Save result message
"""
try:
# Parse list fields
expertise_list = [x.strip() for x in expertise_areas.split(",") if x.strip()]
goals_list = [x.strip() for x in content_goals.split(",") if x.strip()]
languages_list = [x.strip() for x in languages.split(",") if x.strip()]
industries_list = [x.strip() for x in target_industries.split(",") if x.strip()]
skills_list = [x.strip() for x in skills.split(",") if x.strip()]
diff_list = [x.strip() for x in differentiators.split(",") if x.strip()]
# Parse projects JSON
try:
projects = json.loads(projects_json) if projects_json.strip() else []
except json.JSONDecodeError as e:
return f"β Invalid JSON in Notable Projects: {str(e)}"
# Create profile object
profile = UserProfile(
name=name,
target_role=target_role,
expertise_areas=expertise_list,
content_goals=goals_list,
region=region,
languages=languages_list,
target_industries=industries_list,
github_username=github,
linkedin_url=linkedin,
portfolio_url=portfolio,
kaggle_username=kaggle,
notable_projects=projects,
primary_skills=skills_list,
content_tone=tone,
use_emojis=emojis,
posting_frequency=frequency,
unique_value_proposition=uvp,
key_differentiators=diff_list,
)
# Validate before saving
validation = profile.validate()
if validation["errors"]:
return "β Cannot save profile with errors:\n" + "\n".join(
f" β’ {err}" for err in validation["errors"]
)
# Save to YAML
save_profile_to_yaml(profile, PROFILE_PATH)
msg = f"β
Profile saved to {PROFILE_PATH}"
if validation["warnings"]:
msg += "\n\nβ οΈ Warnings:\n" + "\n".join(f" β’ {warn}" for warn in validation["warnings"])
return msg
except Exception as e:
return f"β Error saving profile: {str(e)}"
# ============================================================================
# Tab 3: Session History
# ============================================================================
def list_sessions_ui() -> pd.DataFrame:
"""List all sessions as a DataFrame.
Returns:
DataFrame with session information
"""
try:
sessions = list_sessions()
if not sessions:
return pd.DataFrame(columns=["Session ID", "User", "Messages", "Last Updated"])
df = pd.DataFrame(
[
{
"Session ID": s["session_id"],
"User": s["user_id"],
"Messages": s["message_count"],
"Last Updated": s["updated_at"],
}
for s in sessions
]
)
return df
except Exception as e:
print(f"Error listing sessions: {e}")
return pd.DataFrame(columns=["Session ID", "User", "Messages", "Last Updated"])
def get_session_details_ui(session_id: str) -> str:
"""Get detailed information about a session.
Args:
session_id: Session ID to retrieve
Returns:
Formatted session details or error message
"""
if not session_id or not session_id.strip():
return "Please select a session from the table."
try:
info = get_session_info(session_id.strip())
if not info:
return f"β Session not found: {session_id}"
# Format the information nicely
details = f"""# Session Details
**Session ID**: {info["session_id"]}
**User**: {info["user_id"]}
**Created**: {info["created_at"]}
**Last Updated**: {info["updated_at"]}
**Message Count**: {info["message_count"]}
## Messages
"""
if info.get("messages"):
for i, msg in enumerate(info["messages"], 1):
details += f"### Message {i}\n```\n{msg}\n```\n\n"
else:
details += "*No messages in this session*\n"
return details
except Exception as e:
return f"β Error retrieving session: {str(e)}"
def delete_session_ui(session_id: str) -> Tuple[pd.DataFrame, str]:
"""Delete a session.
Args:
session_id: Session ID to delete
Returns:
Tuple of (updated sessions DataFrame, status message)
"""
if not session_id or not session_id.strip():
return list_sessions_ui(), "Please select a session to delete."
try:
delete_session(session_id.strip())
return list_sessions_ui(), f"β
Session deleted: {session_id}"
except Exception as e:
return list_sessions_ui(), f"β Error deleting session: {str(e)}"
# ============================================================================
# Tab 4: Settings
# ============================================================================
def save_settings_ui(api_key: str, model: str, max_papers: int, citation_style: str) -> str:
"""Save settings (placeholder - would need to update config).
Args:
api_key: Google API key
model: Model name
max_papers: Max papers to search
citation_style: Citation style
Returns:
Status message
"""
# Note: This is a simplified version. In production, you'd want to:
# 1. Update .env file for API key
# 2. Update config file for other settings
# 3. Or use a dedicated settings storage mechanism
messages = []
if api_key and api_key.strip():
messages.append("β οΈ API key changes require restart to take effect")
if model != DEFAULT_MODEL:
messages.append(f"β οΈ Model changed to {model} (requires restart)")
if max_papers != MAX_PAPERS_PER_SEARCH:
messages.append(f"β οΈ Max papers changed to {max_papers} (requires restart)")
if citation_style != CITATION_STYLE:
messages.append(f"β οΈ Citation style changed to {citation_style} (requires restart)")
if not messages:
return "βΉοΈ No settings changes detected"
return "\n".join(messages) + "\n\nπ‘ Settings saved (restart app to apply)"
# ============================================================================
# Main UI Creation
# ============================================================================
def create_ui() -> gr.Blocks:
"""Create the main Gradio UI.
Returns:
Gradio Blocks application
"""
with gr.Blocks(title="Scientific Content Generation Agent") as app:
gr.Markdown(
"""
# π¬ Scientific Content Generation Agent
Generate research-backed content for blogs, LinkedIn, and Twitter using AI-powered multi-agent system.
"""
)
with gr.Tabs():
# ===== TAB 1: GENERATE CONTENT =====
with gr.Tab("π Generate Content"):
gr.Markdown("### Create Scientific Content")
with gr.Row():
with gr.Column():
topic_input = gr.Textbox(
label="Research Topic",
placeholder="e.g., AI Agents and Multi-Agent Systems",
lines=2,
)
platform_checkboxes = gr.CheckboxGroup(
choices=["Blog", "LinkedIn", "Twitter"],
value=["Blog", "LinkedIn", "Twitter"],
label="Target Platforms",
)
tone_dropdown = gr.Dropdown(
choices=[
"professional-formal",
"professional-conversational",
"technical",
],
value="professional-conversational",
label="Content Tone",
)
audience_input = gr.Textbox(
label="Target Audience",
value="researchers and professionals",
lines=1,
)
with gr.Accordion("Advanced Options", open=False):
session_id_input = gr.Textbox(
label="Session ID (optional - leave empty for new session)",
placeholder="Enter session ID to resume",
lines=1,
)
generate_btn = gr.Button("Generate Content", variant="primary", size="lg")
with gr.Column():
output_display = gr.Textbox(
label="Generated Content",
lines=25,
max_lines=50,
)
generate_btn.click(
fn=generate_content_sync,
inputs=[
topic_input,
platform_checkboxes,
tone_dropdown,
audience_input,
session_id_input,
],
outputs=output_display,
)
# ===== TAB 2: PROFILE EDITOR =====
with gr.Tab("π€ Profile Editor"):
gr.Markdown("### Edit Your Professional Profile")
with gr.Row():
with gr.Column():
gr.Markdown("#### Professional Identity")
name_input = gr.Textbox(label="Name", value="Your Name")
target_role_input = gr.Textbox(label="Target Role", value="AI Consultant")
expertise_input = gr.Textbox(
label="Expertise Areas (comma-separated)",
value="Machine Learning, AI",
lines=2,
)
gr.Markdown("#### Professional Goals")
goals_input = gr.Textbox(
label="Content Goals (comma-separated)",
value="opportunities, credibility, visibility",
lines=2,
)
gr.Markdown("#### Geographic & Market")
region_dropdown = gr.Dropdown(
choices=["Europe", "US", "Asia", "Global"],
value="Europe",
label="Region",
)
languages_input = gr.Textbox(
label="Languages (comma-separated)", value="English"
)
industries_input = gr.Textbox(
label="Target Industries (comma-separated)",
value="Technology, Finance",
lines=2,
)
with gr.Column():
gr.Markdown("#### Portfolio & Links")
github_input = gr.Textbox(label="GitHub Username")
linkedin_input = gr.Textbox(label="LinkedIn URL")
portfolio_input = gr.Textbox(label="Portfolio URL")
kaggle_input = gr.Textbox(label="Kaggle Username")
gr.Markdown("#### Technical Skills")
skills_input = gr.Textbox(
label="Primary Skills (comma-separated)",
value="Python, PyTorch, TensorFlow",
lines=2,
)
gr.Markdown("#### Content Preferences")
tone_radio = gr.Radio(
choices=[
"professional-formal",
"professional-conversational",
"technical",
],
value="professional-conversational",
label="Content Tone",
)
emojis_checkbox = gr.Checkbox(label="Use Emojis", value=True)
frequency_dropdown = gr.Dropdown(
choices=["daily", "2-3x per week", "weekly"],
value="2-3x per week",
label="Posting Frequency",
)
with gr.Row():
with gr.Column():
gr.Markdown("#### SEO & Positioning")
uvp_input = gr.Textbox(
label="Unique Value Proposition",
value="I help companies turn AI research into production",
lines=2,
)
diff_input = gr.Textbox(
label="Key Differentiators (comma-separated)",
value="Research to production, End-to-end AI",
lines=2,
)
with gr.Column():
gr.Markdown("#### Notable Projects (JSON)")
projects_input = gr.Code(
label="Projects",
language="json",
value=json.dumps(
[
{
"name": "Project Name",
"description": "Description",
"technologies": "Tech stack",
"url": "https://github.com/...",
}
],
indent=2,
),
lines=10,
)
with gr.Row():
load_btn = gr.Button("Load Profile")
validate_btn = gr.Button("Validate Profile")
save_btn = gr.Button("Save Profile", variant="primary")
profile_status = gr.Textbox(label="Status", lines=5)
# Wire up profile buttons
load_btn.click(
fn=load_profile_ui,
inputs=[],
outputs=[
name_input,
target_role_input,
expertise_input,
goals_input,
region_dropdown,
languages_input,
industries_input,
github_input,
linkedin_input,
portfolio_input,
kaggle_input,
projects_input,
skills_input,
tone_radio,
emojis_checkbox,
frequency_dropdown,
uvp_input,
diff_input,
profile_status,
],
)
validate_btn.click(
fn=validate_profile_ui,
inputs=[
name_input,
target_role_input,
expertise_input,
goals_input,
region_dropdown,
languages_input,
industries_input,
github_input,
linkedin_input,
portfolio_input,
kaggle_input,
projects_input,
skills_input,
tone_radio,
emojis_checkbox,
frequency_dropdown,
uvp_input,
diff_input,
],
outputs=profile_status,
)
save_btn.click(
fn=save_profile_ui,
inputs=[
name_input,
target_role_input,
expertise_input,
goals_input,
region_dropdown,
languages_input,
industries_input,
github_input,
linkedin_input,
portfolio_input,
kaggle_input,
projects_input,
skills_input,
tone_radio,
emojis_checkbox,
frequency_dropdown,
uvp_input,
diff_input,
],
outputs=profile_status,
)
# ===== TAB 3: SESSION HISTORY =====
with gr.Tab("π Session History"):
gr.Markdown("### View and Manage Sessions")
with gr.Row():
refresh_btn = gr.Button("Refresh Sessions")
sessions_table = gr.Dataframe(
label="Sessions",
value=list_sessions_ui(),
interactive=False,
)
with gr.Row():
session_selector = gr.Textbox(
label="Session ID (paste from table)",
placeholder="Enter session ID",
)
session_details = gr.Markdown(label="Session Details")
with gr.Row():
view_details_btn = gr.Button("View Details")
delete_btn = gr.Button("Delete Session", variant="stop")
resume_btn = gr.Button("Resume Session")
session_status = gr.Textbox(label="Status", lines=2)
# Wire up session buttons
refresh_btn.click(fn=list_sessions_ui, inputs=[], outputs=sessions_table)
view_details_btn.click(
fn=get_session_details_ui, inputs=session_selector, outputs=session_details
)
delete_btn.click(
fn=delete_session_ui,
inputs=session_selector,
outputs=[sessions_table, session_status],
)
# Resume session - switches to Tab 1 and populates session ID
def resume_session(session_id):
return session_id
resume_btn.click(
fn=resume_session, inputs=session_selector, outputs=session_id_input
)
# ===== TAB 4: SETTINGS =====
with gr.Tab("βοΈ Settings"):
gr.Markdown("### Configure API and Content Settings")
gr.Markdown("#### API Configuration")
api_key_input = gr.Textbox(
label="Google API Key",
type="password",
placeholder="Enter your API key from https://aistudio.google.com/app/api_keys",
)
gr.Markdown(
"*Your API key is stored locally and never shared. Get one at [Google AI Studio](https://aistudio.google.com/app/api_keys)*"
)
model_dropdown = gr.Dropdown(
choices=["gemini-2.0-flash-exp", "gemini-1.5-pro", "gemini-1.5-flash"],
value=DEFAULT_MODEL,
label="Model",
)
gr.Markdown("#### Content Configuration")
max_papers_slider = gr.Slider(
minimum=1,
maximum=20,
value=MAX_PAPERS_PER_SEARCH,
step=1,
label="Max Papers per Search",
)
citation_radio = gr.Radio(
choices=["apa", "mla", "chicago"], value=CITATION_STYLE, label="Citation Style"
)
save_settings_btn = gr.Button("Save Settings", variant="primary")
settings_status = gr.Textbox(label="Status", lines=3)
save_settings_btn.click(
fn=save_settings_ui,
inputs=[api_key_input, model_dropdown, max_papers_slider, citation_radio],
outputs=settings_status,
)
gr.Markdown(
"""
---
π‘ **Tips**:
- Generate Content: Enter a topic and click Generate (takes 2-5 minutes)
- Profile Editor: Customize your professional profile for personalized content
- Session History: Resume previous generations or delete old sessions
- Settings: Configure API key and content preferences
π [Documentation](https://github.com/anthropics/agentic-content-generation) |
π [Report Issues](https://github.com/anthropics/agentic-content-generation/issues)
"""
)
return app
# ============================================================================
# Main Entry Point
# ============================================================================
if __name__ == "__main__":
print("π Launching Scientific Content Generation Agent UI...")
print("π Access at: http://localhost:7860")
print()
app = create_ui()
app.queue() # Enable queueing for long-running tasks
app.launch(server_name="0.0.0.0", server_port=7860, share=False)
|