Christophe Bourgoin
Fix: Create PROFILE_DIR at module import time
f90fc86
"""User professional profile configuration for personalized content generation."""
import re
from dataclasses import dataclass, field
from pathlib import Path
from typing import Any
import yaml
@dataclass
class UserProfile:
"""Professional profile configuration for content personalization.
This profile helps tailor content to your expertise, positioning,
and professional goals for maximum opportunity generation.
"""
# Professional Identity
name: str = "Your Name"
target_role: str = "AI Consultant" # AI Consultant, ML Engineer, AI Architect, etc.
expertise_areas: list[str] = field(
default_factory=lambda: ["Machine Learning", "Artificial Intelligence", "Deep Learning"]
)
# Professional Goals
content_goals: list[str] = field(
default_factory=lambda: [
"opportunities", # Attract freelance/job opportunities
"credibility", # Build professional credibility
"visibility", # Increase visibility in the field
]
)
# Geographic & Market
region: str = "Europe" # Europe, US, Asia, Global, etc.
languages: list[str] = field(default_factory=lambda: ["English"])
target_industries: list[str] = field(
default_factory=lambda: ["Technology", "Finance", "Healthcare", "Consulting"]
)
# Portfolio & Experience
github_username: str = "" # Your GitHub username
linkedin_url: str = "" # Your LinkedIn profile URL
portfolio_url: str = "" # Personal website/portfolio
kaggle_username: str = "" # Your Kaggle username
# Key Projects (to mention in content)
notable_projects: list[dict[str, str]] = field(
default_factory=lambda: [
{
"name": "Project Name",
"description": "Brief description of what you built",
"technologies": "PyTorch, FastAPI, Docker",
"url": "https://github.com/username/project",
}
]
)
# Technical Skills & Tools
primary_skills: list[str] = field(
default_factory=lambda: ["Python", "PyTorch", "TensorFlow", "Scikit-learn", "MLflow"]
)
# Content Preferences
content_tone: str = (
"professional-conversational" # professional-formal, professional-conversational, technical
)
use_emojis: bool = True # Use emojis in LinkedIn posts
posting_frequency: str = "2-3x per week" # daily, 2-3x per week, weekly
# SEO & Positioning
unique_value_proposition: str = (
"I help companies turn AI research into production-ready solutions"
)
key_differentiators: list[str] = field(
default_factory=lambda: [
"Bridging research and production",
"End-to-end AI implementation",
"Business-focused technical expertise",
]
)
def to_dict(self) -> dict[str, Any]:
"""Convert profile to dictionary for agent context."""
return {
"name": self.name,
"target_role": self.target_role,
"expertise_areas": self.expertise_areas,
"content_goals": self.content_goals,
"region": self.region,
"languages": self.languages,
"target_industries": self.target_industries,
"github_username": self.github_username,
"linkedin_url": self.linkedin_url,
"portfolio_url": self.portfolio_url,
"kaggle_username": self.kaggle_username,
"notable_projects": self.notable_projects,
"primary_skills": self.primary_skills,
"content_tone": self.content_tone,
"use_emojis": self.use_emojis,
"posting_frequency": self.posting_frequency,
"unique_value_proposition": self.unique_value_proposition,
"key_differentiators": self.key_differentiators,
}
def get_profile_summary(self) -> str:
"""Generate a text summary of the profile for agent instructions."""
expertise_str = ", ".join(self.expertise_areas)
skills_str = ", ".join(self.primary_skills[:5])
goals_str = ", ".join(self.content_goals)
summary = f"""
**Professional Profile**:
- Role: {self.target_role}
- Expertise: {expertise_str}
- Key Skills: {skills_str}
- Region: {self.region}
- Content Goals: {goals_str}
- Value Proposition: {self.unique_value_proposition}
- Tone: {self.content_tone}
"""
if self.github_username:
summary += f"- GitHub: github.com/{self.github_username}\n"
if self.linkedin_url:
summary += f"- LinkedIn: {self.linkedin_url}\n"
if self.notable_projects and self.notable_projects[0]["name"] != "Project Name":
summary += "\n**Notable Projects to Mention**:\n"
for project in self.notable_projects[:3]:
summary += (
f"- {project['name']}: {project['description']} ({project['technologies']})\n"
)
return summary
def validate(self) -> dict[str, list[str]]:
"""Validate profile completeness and correctness.
Returns:
Dictionary with 'errors' and 'warnings' lists
"""
errors = []
warnings = []
# Validate required fields
if self.name == "Your Name" or not self.name.strip():
warnings.append("⚠️ Name is not set. Please update 'name' field in profile.yaml")
if not self.expertise_areas or (
len(self.expertise_areas) == 3
and self.expertise_areas[0] == "Machine Learning"
and self.expertise_areas[1] == "Artificial Intelligence"
):
warnings.append(
"⚠️ Using default expertise areas. Update 'expertise_areas' with your specific skills"
)
# Validate URLs
url_pattern = re.compile(
r"^https?://" # http:// or https://
r"(?:(?:[A-Z0-9](?:[A-Z0-9-]{0,61}[A-Z0-9])?\.)+[A-Z]{2,6}\.?|" # domain...
r"localhost|" # localhost...
r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})" # ...or ip
r"(?::\d+)?" # optional port
r"(?:/?|[/?]\S+)$",
re.IGNORECASE,
)
if self.linkedin_url and not url_pattern.match(self.linkedin_url):
errors.append(
f"❌ Invalid LinkedIn URL: '{self.linkedin_url}'. Must start with http:// or https://"
)
if self.portfolio_url and not url_pattern.match(self.portfolio_url):
errors.append(
f"❌ Invalid portfolio URL: '{self.portfolio_url}'. Must start with http:// or https://"
)
# Validate GitHub username (no special URL validation, just username)
if self.github_username and "/" in self.github_username:
warnings.append(
f"⚠️ GitHub username should be just the username, not a URL: '{self.github_username}'"
)
# Validate Kaggle username
if self.kaggle_username and "/" in self.kaggle_username:
warnings.append(
f"⚠️ Kaggle username should be just the username, not a URL: '{self.kaggle_username}'"
)
# Validate content_tone enum
valid_tones = ["professional-formal", "professional-conversational", "technical", "casual"]
if self.content_tone not in valid_tones:
errors.append(
f"❌ Invalid content_tone: '{self.content_tone}'. "
f"Valid options: {', '.join(valid_tones)}"
)
# Validate content_goals
valid_goals = [
"opportunities",
"credibility",
"visibility",
"thought-leadership",
"networking",
]
invalid_goals = [g for g in self.content_goals if g not in valid_goals]
if invalid_goals:
warnings.append(
f"⚠️ Unrecognized content goals: {', '.join(invalid_goals)}. "
f"Valid options: {', '.join(valid_goals)}"
)
# Validate posting_frequency
valid_frequencies = ["daily", "2-3x per week", "weekly", "biweekly", "monthly"]
if self.posting_frequency not in valid_frequencies:
warnings.append(
f"⚠️ Unrecognized posting frequency: '{self.posting_frequency}'. "
f"Valid options: {', '.join(valid_frequencies)}"
)
# Validate lists are not empty
if not self.expertise_areas:
errors.append(
"❌ 'expertise_areas' cannot be empty. Add at least one area of expertise"
)
if not self.primary_skills:
warnings.append("⚠️ 'primary_skills' is empty. Consider adding your technical skills")
if not self.target_industries:
warnings.append("⚠️ 'target_industries' is empty. Consider adding target industries")
# Validate notable_projects structure
for idx, project in enumerate(self.notable_projects):
required_keys = ["name", "description", "technologies", "url"]
missing_keys = [key for key in required_keys if key not in project]
if missing_keys:
warnings.append(f"⚠️ Project {idx + 1} missing keys: {', '.join(missing_keys)}")
# Check if still using default project
if project.get("name") == "Project Name":
warnings.append(
"⚠️ Using default project placeholder. Update 'notable_projects' with your actual projects"
)
break # Only warn once
# Validate unique_value_proposition
if (
self.unique_value_proposition
== "I help companies turn AI research into production-ready solutions"
):
warnings.append(
"⚠️ Using default value proposition. Update 'unique_value_proposition' with your unique offering"
)
return {"errors": errors, "warnings": warnings}
# Default profile (users should customize this)
DEFAULT_PROFILE = UserProfile()
# Path to user profile configuration
PROFILE_DIR = Path.home() / ".agentic-content-generation"
PROFILE_PATH = PROFILE_DIR / "profile.yaml"
# Ensure directory exists (critical for HF Spaces and first-time setup)
PROFILE_DIR.mkdir(parents=True, exist_ok=True)
def load_profile_from_yaml(path: Path) -> UserProfile:
"""Load user profile from YAML file.
Args:
path: Path to the YAML file
Returns:
UserProfile instance
"""
if not path.exists():
return DEFAULT_PROFILE
try:
with open(path, encoding="utf-8") as f:
data = yaml.safe_load(f)
if not data:
return DEFAULT_PROFILE
# Filter out any keys that don't exist in UserProfile
valid_keys = UserProfile.__annotations__.keys()
filtered_data = {k: v for k, v in data.items() if k in valid_keys}
return UserProfile(**filtered_data)
except Exception as e:
print(f"Warning: Failed to load profile from {path}: {e}")
return DEFAULT_PROFILE
def save_profile_to_yaml(profile: UserProfile, path: Path) -> None:
"""Save user profile to YAML file.
Args:
profile: UserProfile instance
path: Path to save the YAML file
"""
# Create directory if it doesn't exist
path.parent.mkdir(parents=True, exist_ok=True)
with open(path, "w", encoding="utf-8") as f:
yaml.dump(profile.to_dict(), f, default_flow_style=False, sort_keys=False)
def load_user_profile(validate: bool = True) -> UserProfile:
"""Load user profile from configuration.
Checks ~/.agentic-content-generation/profile.yaml first.
Falls back to default profile if not found.
Args:
validate: Whether to run validation and display warnings/errors
Returns:
UserProfile instance
"""
if PROFILE_PATH.exists():
print(f"👤 Loading profile from {PROFILE_PATH}")
profile = load_profile_from_yaml(PROFILE_PATH)
else:
print("👤 Using default profile (no custom profile found)")
print(f"💡 Run with --init-profile to create one at {PROFILE_PATH}")
profile = DEFAULT_PROFILE
# Validate profile if requested
if validate:
validation = profile.validate()
errors = validation["errors"]
warnings = validation["warnings"]
if errors:
print("\n❌ Profile Validation Errors:")
for error in errors:
print(f" {error}")
print("\n⚠️ Please fix these errors in your profile.yaml before continuing.\n")
raise ValueError(f"Profile validation failed with {len(errors)} error(s)")
if warnings:
print("\n📋 Profile Validation Warnings:")
for warning in warnings:
print(f" {warning}")
print()
return profile
def create_custom_profile(
name: str, target_role: str, expertise_areas: list[str], **kwargs
) -> UserProfile:
"""Create a custom user profile.
Args:
name: Your name
target_role: Target professional role
expertise_areas: List of expertise areas
**kwargs: Additional profile fields
Returns:
UserProfile instance
"""
return UserProfile(
name=name, target_role=target_role, expertise_areas=expertise_areas, **kwargs
)