Spaces:
Running
Running
Update text_generator.py
Browse files- text_generator.py +68 -93
text_generator.py
CHANGED
|
@@ -1,93 +1,68 @@
|
|
| 1 |
-
import
|
| 2 |
-
import
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
''
|
| 22 |
-
|
| 23 |
-
#
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
"
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
readme_file.write(readme_content)
|
| 70 |
-
|
| 71 |
-
with open("tool_config.json", "w") as tool_config_file:
|
| 72 |
-
tool_config_file.write(tool_config_json)
|
| 73 |
-
|
| 74 |
-
with open("app.py", "w") as app_py_file:
|
| 75 |
-
app_py_file.write(app_py_content)
|
| 76 |
-
|
| 77 |
-
with open("requirements.txt", "w") as requirements_file:
|
| 78 |
-
requirements_file.write(requirements_content)
|
| 79 |
-
|
| 80 |
-
with open(f"{tool_name}.py", "w") as text_generator_py_file:
|
| 81 |
-
text_generator_py_file.write(text_generator_py_content)
|
| 82 |
-
|
| 83 |
-
# Return the generated files for download
|
| 84 |
-
return "README.md", "tool_config.json", "app.py", "requirements.txt", f"{tool_name}.py"
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
# Define the inputs for the Gradio interface
|
| 88 |
-
io = gr.Interface(generate_files,
|
| 89 |
-
inputs=["text", "text", "text", "text", "text", "text", "text", "text", "checkbox", "text", "text"],
|
| 90 |
-
outputs=["text", "text", "text", "text", "text"])
|
| 91 |
-
|
| 92 |
-
# Launch the Gradio interface
|
| 93 |
-
io.launch()
|
|
|
|
| 1 |
+
import requests
|
| 2 |
+
import os
|
| 3 |
+
from transformers import pipeline
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
from transformers import Tool
|
| 7 |
+
# Import other necessary libraries if needed
|
| 8 |
+
|
| 9 |
+
class TextGenerationTool(Tool):
|
| 10 |
+
name = "text_generator"
|
| 11 |
+
description = (
|
| 12 |
+
"This is a tool for text generation. It takes a prompt as input and returns the generated text."
|
| 13 |
+
)
|
| 14 |
+
|
| 15 |
+
inputs = ["text"]
|
| 16 |
+
outputs = ["text"]
|
| 17 |
+
|
| 18 |
+
def __call__(self, prompt: str):
|
| 19 |
+
#API_URL = "https://api-inference.huggingface.co/models/openchat/openchat_3.5"
|
| 20 |
+
#headers = {"Authorization": "Bearer " + os.environ['hf']}
|
| 21 |
+
token=os.environ['HF_token']
|
| 22 |
+
#payload = {
|
| 23 |
+
# "inputs": prompt # Adjust this based on your model's input format
|
| 24 |
+
#}
|
| 25 |
+
|
| 26 |
+
#payload = {
|
| 27 |
+
# "inputs": "Can you please let us know more details about your ",
|
| 28 |
+
# }
|
| 29 |
+
|
| 30 |
+
#def query(payload):
|
| 31 |
+
#generated_text = requests.post(API_URL, headers=headers, json=payload).json()
|
| 32 |
+
#print(generated_text)
|
| 33 |
+
#return generated_text["text"]
|
| 34 |
+
|
| 35 |
+
# Replace the following line with your text generation logic
|
| 36 |
+
#generated_text = f"Generated text based on the prompt: '{prompt}'"
|
| 37 |
+
|
| 38 |
+
# Initialize the text generation pipeline
|
| 39 |
+
#text_generator = pipeline(model="lgaalves/gpt2-dolly", token=token)
|
| 40 |
+
text_generator = pipeline(model="microsoft/Orca-2-13b", token=token)
|
| 41 |
+
|
| 42 |
+
# Generate text based on a prompt
|
| 43 |
+
generated_text = text_generator(prompt, max_length=500, num_return_sequences=1, temperature=0.7)
|
| 44 |
+
|
| 45 |
+
# Print the generated text
|
| 46 |
+
print(generated_text)
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
return generated_text
|
| 51 |
+
|
| 52 |
+
# Define the payload for the request
|
| 53 |
+
#payload = {
|
| 54 |
+
# "inputs": prompt # Adjust this based on your model's input format
|
| 55 |
+
#}
|
| 56 |
+
|
| 57 |
+
# Make the request to the API
|
| 58 |
+
#generated_text = requests.post(API_URL, headers=headers, json=payload).json()
|
| 59 |
+
|
| 60 |
+
# Extract and return the generated text
|
| 61 |
+
#return generated_text["generated_text"]
|
| 62 |
+
|
| 63 |
+
# Uncomment and customize the following lines based on your text generation needs
|
| 64 |
+
# text_generator = pipeline(model="gpt2")
|
| 65 |
+
# generated_text = text_generator(prompt, max_length=500, num_return_sequences=1, temperature=0.7)
|
| 66 |
+
|
| 67 |
+
# Print the generated text if needed
|
| 68 |
+
# print(generated_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|