File size: 4,722 Bytes
034f4b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import torch
import torch.nn as nn
import torch.nn.functional as F

try:
    from .arch_util import CustomSequential
    from .arch_model import EfficientClassificationHead,NAFBlock
    from .moeblocks import  MoEBlock
except:
    from arch_util import CustomSequential
    from arch_model import EfficientClassificationHead, NAFBlock
    from moeblocks import  MoEBlock


TASKS = {'defocus': [1.0, 0, 0, 0, 0],
         'global_motion': [0, 1.0, 0, 0, 0],
         'local_motion': [0, 0, 1.0, 0, 0],
         'synth_global_motion': [0, 0, 0, 1.0, 0],
         'low_light': [0, 0, 0, 0, 1.0]}

class DeMoE(nn.Module):

    def __init__(self, img_channel=3, width=16, middle_blk_num=1, enc_blk_nums=[], dec_blk_nums=[], num_exp=5, k_used=3):
        super().__init__()

        self.num_experts = num_exp
        self.intro = nn.Conv2d(in_channels=img_channel, out_channels=width, kernel_size=3, padding=1, stride=1, groups=1,
                              bias=True)
        self.ending = nn.Conv2d(in_channels=width, out_channels=img_channel, kernel_size=3, padding=1, stride=1, groups=1,
                              bias=True)

        self.encoders = nn.ModuleList()
        self.decoders = nn.ModuleList()
        self.middle_blks = nn.ModuleList()
        self.ups = nn.ModuleList()
        self.downs = nn.ModuleList()
        self.experts = nn.ModuleList()

        chan = width
        for num in enc_blk_nums:
            self.encoders.append(
                CustomSequential(
                    *[NAFBlock(chan)  if i==0 else NAFBlock(chan) for i in range(num)]
                )
            )
            self.downs.append(
                nn.Conv2d(chan, 2*chan, 2, 2)
            )
            chan = chan * 2

        self.middle_blks = \
            CustomSequential(
                *[NAFBlock(chan)  if i==0 else NAFBlock(chan) for i in range(middle_blk_num)]
            )
        self.experts.append(MoEBlock(c=chan, n=num_exp, used=k_used))

        for num in dec_blk_nums:
            self.ups.append(
                nn.Sequential(
                    nn.Conv2d(chan, chan * 2, 1, bias=False),
                    nn.PixelShuffle(2)
                )
            )
            chan = chan // 2
            self.decoders.append(
                CustomSequential(
                    *[NAFBlock(chan)  if i==0 else NAFBlock(chan) for i in range(num)]
                )
            )
            self.experts.append(MoEBlock(c=chan, n=num_exp, used=k_used))


        self.mlp_branch = EfficientClassificationHead(in_channels=width*2**len(enc_blk_nums), num_classes=num_exp)

        

        self.padder_size = 2 ** len(self.encoders)
    
    def forward(self, inp, task = 'auto'):
        B, C, H, W = inp.shape
        inp = self.check_image_size(inp)

        x = self.intro(inp)

        encs = []
        bins = []
        weights = []
        for encoder, down in zip(self.encoders, self.downs):
            x = encoder(x)
            encs.append(x)
            x = down(x)
        class_weights_0 = self.mlp_branch(x)
        class_weights = F.softmax(class_weights_0)
        # if the task is selected manually
        if task != 'auto':
            class_weights = torch.tensor(TASKS[task], device=x.device).unsqueeze(0).expand(B, -1)
        x = self.middle_blks(x)
        x, expert_bins, weight = self.experts[0].forward(x, class_weights)
        bins.append(expert_bins)
        weights.append(weight)
        for decoder, up, enc_skip, expert in zip(self.decoders, self.ups, encs[::-1], self.experts[1::1]):
            x = up(x)
            x = x + enc_skip
            x = decoder(x)
            x, expert_bins, weight= expert.forward(x, class_weights)
            bins.append(expert_bins)
            weights.append(weight)
        x = self.ending(x)
        x = x + inp
    
        return {'output': x[:, :, :H, :W],
                'bin_counts': torch.stack(bins, dim=0),
                'pred_labels': class_weights,
                'weights': weights}

    def check_image_size(self, x):
        _, _, h, w = x.size()
        mod_pad_h = (self.padder_size - h % self.padder_size) % self.padder_size
        mod_pad_w = (self.padder_size - w % self.padder_size) % self.padder_size
        x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), value = 0)
        return x

if __name__=='__main__':

    from ptflops import get_model_complexity_info

    net = DeMoE(img_channel=3, width=32,
                 middle_blk_num=2, enc_blk_nums=[2,2,2,2], dec_blk_nums=[2,2,2,2],k_used=1)
    print('State dict: ',len(net.state_dict().keys()))
    macs, params = get_model_complexity_info(net, input_res=(3, 256, 256), print_per_layer_stat=False, verbose=False)
    print(macs, params)