File size: 7,857 Bytes
034f4b8 a490245 034f4b8 5d01aa8 034f4b8 a490245 5d01aa8 a490245 5d01aa8 a490245 5d01aa8 a490245 5d01aa8 a490245 034f4b8 5d01aa8 034f4b8 a490245 034f4b8 5d01aa8 034f4b8 5d01aa8 034f4b8 5d01aa8 034f4b8 a490245 034f4b8 5d01aa8 034f4b8 a490245 5d01aa8 a490245 5d01aa8 a490245 5d01aa8 a490245 5d01aa8 a490245 034f4b8 a490245 5d01aa8 a490245 034f4b8 2712eab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
import gradio as gr
from PIL import Image
import torch
import torchvision.transforms as transforms
import torch.nn.functional as F
import os
import glob
from archs import create_model, load_model
# -------- Detect folders & images (assets/<folder>) --------
IMG_EXTS = (".png", ".jpg", ".jpeg", ".bmp", ".webp")
def list_subfolders(base="examples"):
"""Return a sorted list of immediate subfolders inside base."""
if not os.path.isdir(base):
return []
subs = [d for d in sorted(os.listdir(base)) if os.path.isdir(os.path.join(base, d))]
return subs
def list_images(folder):
"""Return full paths of images inside examples/<folder>."""
paths = sorted(glob.glob(os.path.join("examples", folder, "*")))
return [p for p in paths if p.lower().endswith(IMG_EXTS)]
# -------- Folder/Gallery interactions --------
def update_gallery(folder):
"""Given a folder name, return the gallery items (list of image paths) and store the same list in state."""
files = list_images(folder)
print(files)
return gr.update(value=files, visible=True), files
def load_from_gallery(evt: gr.SelectData, current_files):
"""On gallery click, load the clicked image path into the input image."""
idx = evt.index
if not current_files or idx is None or idx >= len(current_files):
return gr.update()
path = current_files[idx]
print(path)
return Image.open(path)
# Model
PATH_MODEL = './DeMoE.pt'
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_opt = {
'name': 'DeMoE',
'img_channels': 3,
'width': 32,
'middle_blk_num': 2,
'enc_blk_nums': [2, 2, 2, 2],
'dec_blk_nums': [2, 2, 2, 2],
'num_experts': 5,
'k_used': 1
}
pil_to_tensor = transforms.ToTensor()
tensor_to_pil = transforms.ToPILImage()
model = create_model(model_opt, device)
checkpoints = torch.load(PATH_MODEL, map_location=device, weights_only=False)
model = load_model(model, PATH_MODEL, device)
model.eval()
def pad_tensor(tensor, multiple = 16):
'''pad the tensor to be multiple of some number'''
multiple = multiple
_, _, H, W = tensor.shape
pad_h = (multiple - H % multiple) % multiple
pad_w = (multiple - W % multiple) % multiple
tensor = F.pad(tensor, (0, pad_w, 0, pad_h), value = 0)
return tensor
TASK_LABELS = ["Auto", "Defocus", "Low-Light", "Global-Motion", "Synth-Global-Motion", "Local-Motion"]
# Map pretty label -> internal task code used by the model
LABEL_TO_TASK = {
"Auto": "auto",
"Low-Light": "low_light",
"Global-Motion": "global_motion",
"Defocus": "defocus",
"Synth-Global-Motion": "synth_global_motion",
"Local-Motion": "local_motion",
}
def process_img(image, task_label = 'auto'):
"""Main inference: converts PIL -> tensor, pads, runs the model with selected task, clamps, crops, returns PIL."""
task_label = LABEL_TO_TASK.get(task_label, 'auto')
tensor = pil_to_tensor(image).unsqueeze(0).to(device)
_, _, H, W = tensor.shape
print('Using task:', task_label)
tensor = pad_tensor(tensor)
with torch.no_grad():
output_dict = model(tensor, task_label)
output = output_dict['output']
# print(output.shape)
output = torch.clamp(output, 0., 1.)
output = output[:,:, :H, :W].squeeze(0)
return tensor_to_pil(output)
title = 'DeMoE 🌪️'
description = ''' >**Abstract**: Image deblurring, removing blurring artifacts from images, is a fundamental task in computational photography and low-level computer vision. Existing approaches focus on specialized solutions tailored to particular blur types, thus, these solutions lack generalization. This limitation in current methods implies requiring multiple models to cover several blur types, which is not practical in many real scenarios. In this paper, we introduce the first all-in-one deblurring method capable of efficiently restoring images affected by diverse blur degradations, including global motion, local motion, blur in low-light conditions, and defocus blur. We propose a mixture-of-experts (MoE) decoding module, which dynamically routes image features based on the recognized blur degradation, enabling precise and efficient restoration in an end-to-end manner. Our unified approach not only achieves performance comparable to dedicated task-specific models, but also shows promising generalization to unseen blur scenarios, particularly when leveraging appropriate expert selection.
[Daniel Feijoo](https://github.com/danifei), Paula Garrido-Mellado, Jaesung Rim, Álvaro García, Marcos V. Conde
[Fundación Cidaut](https://cidaut.ai/)
Available code at [github](https://github.com/cidautai/DeMoE). More information on the [Arxiv paper](https://arxiv.org/pdf/2508.06228).
> **Disclaimer:** please remember this is not a product, thus, you will notice some limitations.
**This demo expects an image with some Low-Light degradations.**
<br>
'''
css = """
.fitbox img,
.fitbox canvas {
width: 100% !important;
height: 100% !important;
object-fit: contain !important;
}
"""
# Example lists per folder under ./assets (kept simple, no helpers)
exts = (".png", ".jpg", ".jpeg", ".bmp", ".webp")
def list_basenames(folder):
"""Return [[basename, task_label], ...] for gr.Examples using examples_dir."""
paths = sorted(glob.glob(f"examples/{folder}/*"))
basenames = [os.path.basename(p) for p in paths if p.lower().endswith(exts)]
# Default task per folder (tweak as you like)
default_task = "auto"
return [[name, default_task] for name in basenames]
examples_low_light = list_basenames("low_light")
examples_global_motion = list_basenames("global_motion")
examples_synth_global_motion = list_basenames("synth_global_motion")
examples_local_motion = list_basenames("local_motion")
examples_defocus = list_basenames("defocus")
# print(examples_defocus, examples_global_motion, examples_low_light, examples_synth_global_motion, examples_local_motion)
# -----------------------------
# Gradio Blocks layout
# -----------------------------
with gr.Blocks(css=css, title=title) as demo:
gr.Markdown(f"# {title}\n\n{description}")
with gr.Row():
# Input image and the task selector (Radio)
inp_img = gr.Image(type='pil', label='input', height=320)
# Output image and action button
out_img = gr.Image(type='pil', label='output', height=320)
task_selector = gr.Radio(
choices=TASK_LABELS,
value="Auto",
label="Blur type"
)
btn = gr.Button("Restore", variant="primary")
# Connect the button to the inference function
btn.click(
fn=process_img,
inputs=[inp_img, task_selector],
outputs=[out_img]
)
# Examples grouped by folder (each item loads image + task automatically)
gr.Markdown("## Examples")
with gr.Row():
# List folders found in ./assets
folders = list_subfolders("examples")
print(folders)
folder_radio = gr.Radio(choices=folders, label="Examples Folders", interactive=True)
gallery = gr.Gallery(
label="Images from the selected folder",
visible=False,
allow_preview=True,
columns=6,
height=320,
)
# State holds the current file list shown in the gallery (to resolve clicks)
current_files_state = gr.State([])
# When changing folder -> update gallery and state
folder_radio.change(
fn=update_gallery,
inputs=folder_radio,
outputs=[gallery, current_files_state]
)
# When clicking a thumbnail -> load it into the input image
gallery.select(
fn=load_from_gallery,
inputs=[current_files_state],
outputs=inp_img
)
if __name__ == '__main__':
demo.launch(show_error = True) |