import torch import torch.nn as nn try: from .arch_util import LayerNorm2d except: from arch_util import LayerNorm2d # ------------------------------------------------------------------------ # Modified from NAFNet (https://github.com/megvii-research/NAFNet) # ------------------------------------------------------------------------ class SimpleGate(nn.Module): def forward(self, x): x1, x2 = x.chunk(2, dim=1) return x1 * x2 class NAFBlock(nn.Module): def __init__(self, c, DW_Expand=2, FFN_Expand=2, drop_out_rate=0.): super().__init__() dw_channel = c * DW_Expand self.conv1 = nn.Conv2d(in_channels=c, out_channels=dw_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True) self.conv2 = nn.Conv2d(in_channels=dw_channel, out_channels=dw_channel, kernel_size=3, padding=1, stride=1, groups=dw_channel, bias=True) # the dconv self.conv3 = nn.Conv2d(in_channels=dw_channel // 2, out_channels=c, kernel_size=1, padding=0, stride=1, groups=1, bias=True) # Simplified Channel Attention self.sca = nn.Sequential( nn.AdaptiveAvgPool2d(1), nn.Conv2d(in_channels=dw_channel // 2, out_channels=dw_channel // 2, kernel_size=1, padding=0, stride=1, groups=1, bias=True), ) # SimpleGate self.sg = SimpleGate() ffn_channel = FFN_Expand * c self.conv4 = nn.Conv2d(in_channels=c, out_channels=ffn_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True) self.conv5 = nn.Conv2d(in_channels=ffn_channel // 2, out_channels=c, kernel_size=1, padding=0, stride=1, groups=1, bias=True) self.norm1 = LayerNorm2d(c) self.norm2 = LayerNorm2d(c) self.dropout1 = nn.Dropout(drop_out_rate) if drop_out_rate > 0. else nn.Identity() self.dropout2 = nn.Dropout(drop_out_rate) if drop_out_rate > 0. else nn.Identity() self.beta = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True) self.gamma = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True) def forward(self, inp): x = inp # size [B, C, H, W] x = self.norm1(x) # size [B, C, H, W] x = self.conv1(x) # size [B, 2*C, H, W] x = self.conv2(x) # size [B, 2*C, H, W] x = self.sg(x) # size [B, C, H, W] x = x * self.sca(x) # size [B, C, H, W] x = self.conv3(x) # size [B, C, H, W] x = self.dropout1(x) y = inp + x * self.beta # size [B, C, H, W] x = self.conv4(self.norm2(y)) # size [B, 2*C, H, W] x = self.sg(x) # size [B, C, H, W] x = self.conv5(x) # size [B, C, H, W] x = self.dropout2(x) x = y + x * self.gamma return x class EfficientClassificationHead(nn.Module): def __init__(self, in_channels, num_classes=5): super().__init__() self.conv_bottleneck = nn.Sequential( nn.Conv2d(in_channels, 256, kernel_size=1), # Channel reduction nn.BatchNorm2d(256), nn.ReLU(inplace=True), nn.Dropout2d(0.2)) self.attention = nn.Sequential( nn.Conv2d(256, 1, kernel_size=1), nn.Sigmoid()) self.classifier = nn.Sequential( nn.AdaptiveAvgPool2d(1), nn.Flatten(), nn.Linear(256, 128), nn.BatchNorm1d(128), nn.ReLU(inplace=True), nn.Dropout(0.3), nn.Linear(128, num_classes)) def forward(self, x): x = self.conv_bottleneck(x) attention_mask = self.attention(x) x = x * attention_mask # Spatial attention return self.classifier(x)