import torch import numpy as np from torch import nn as nn from torch.nn import init as init # ------------------------------------------------------------------------ # Modified from NAFNet (https://github.com/megvii-research/NAFNet) # ------------------------------------------------------------------------ class LayerNormFunction(torch.autograd.Function): @staticmethod def forward(ctx, x, weight, bias, eps): ctx.eps = eps N, C, H, W = x.size() mu = x.mean(1, keepdim=True) var = (x - mu).pow(2).mean(1, keepdim=True) y = (x - mu) / (var + eps).sqrt() ctx.save_for_backward(y, var, weight) y = weight.view(1, C, 1, 1) * y + bias.view(1, C, 1, 1) return y @staticmethod def backward(ctx, grad_output): eps = ctx.eps N, C, H, W = grad_output.size() y, var, weight = ctx.saved_variables g = grad_output * weight.view(1, C, 1, 1) mean_g = g.mean(dim=1, keepdim=True) mean_gy = (g * y).mean(dim=1, keepdim=True) gx = 1. / torch.sqrt(var + eps) * (g - y * mean_gy - mean_g) return gx, (grad_output * y).sum(dim=3).sum(dim=2).sum(dim=0), grad_output.sum(dim=3).sum(dim=2).sum( dim=0), None class LayerNorm2d(nn.Module): def __init__(self, channels, eps=1e-6): super(LayerNorm2d, self).__init__() self.register_parameter('weight', nn.Parameter(torch.ones(channels))) self.register_parameter('bias', nn.Parameter(torch.zeros(channels))) self.eps = eps def forward(self, x): return LayerNormFunction.apply(x, self.weight, self.bias, self.eps) def calc_mean_std(feat, eps=1e-5): """ Calculate mean and std for the given feature map. feat: Tensor of shape [B, C, H, W] eps: small value to avoid division by zero """ B, C, _, _ = feat.size() # Compute mean and std for the feature map across spatial dimensions. feat_mean = feat.mean(dim=1, keepdim=True) feat_std = feat.var(dim=1, keepdim=True) + eps feat_std = feat_std.sqrt() return feat_mean, feat_std class CustomSequential(nn.Module): ''' Similar to nn.Sequential, but it lets us introduce a second argument in the forward method so adaptors can be considered in the inference. ''' def __init__(self, *args): super(CustomSequential, self).__init__() self.modules_list = nn.ModuleList(args) def forward(self, x): for module in self.modules_list: x = module(x) return x if __name__ == '__main__': pass