Spaces:
Build error
Build error
add app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import torch
|
| 3 |
+
from torch import nn
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
from torchvision.transforms import ToTensor
|
| 6 |
+
|
| 7 |
+
# Define model
|
| 8 |
+
class ConvNet(nn.Module):
|
| 9 |
+
def __init__(self):
|
| 10 |
+
super(CNN, self).__init__()
|
| 11 |
+
self.conv1 = nn.Conv2d(1, 32, kernel_size=5)
|
| 12 |
+
self.conv2 = nn.Conv2d(32, 32, kernel_size=5)
|
| 13 |
+
self.conv3 = nn.Conv2d(32,64, kernel_size=5)
|
| 14 |
+
self.fc1 = nn.Linear(3*3*64, 256)
|
| 15 |
+
self.fc2 = nn.Linear(256, 10)
|
| 16 |
+
|
| 17 |
+
def forward(self, x):
|
| 18 |
+
x = F.relu(self.conv1(x))
|
| 19 |
+
#x = F.dropout(x, p=0.5, training=self.training)
|
| 20 |
+
x = F.relu(F.max_pool2d(self.conv2(x), 2))
|
| 21 |
+
x = F.dropout(x, p=0.5, training=self.training)
|
| 22 |
+
x = F.relu(F.max_pool2d(self.conv3(x),2))
|
| 23 |
+
x = F.dropout(x, p=0.5, training=self.training)
|
| 24 |
+
x = x.view(-1,3*3*64 )
|
| 25 |
+
x = F.relu(self.fc1(x))
|
| 26 |
+
x = F.dropout(x, training=self.training)
|
| 27 |
+
logits = self.fc2(x)
|
| 28 |
+
return logits
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
model = ConvNet()
|
| 32 |
+
model.load_state_dict(
|
| 33 |
+
torch.load("weights/mnist_convnet_model.pth",
|
| 34 |
+
map_location=torch.device('cpu'))
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
model.eval()
|
| 38 |
+
|
| 39 |
+
import gradio as gr
|
| 40 |
+
from torchvision import transforms
|
| 41 |
+
|
| 42 |
+
def predict(image):
|
| 43 |
+
tsr_image = transforms.ToTensor()(image)
|
| 44 |
+
|
| 45 |
+
with torch.no_grad():
|
| 46 |
+
pred = model(tsr_image)
|
| 47 |
+
prob = torch.nn.functional.softmax(pred[0], dim=0)
|
| 48 |
+
|
| 49 |
+
confidences = {i: float(prob[i]) for i in range(10)}
|
| 50 |
+
return confidences
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
with gr.Blocks(css=".gradio-container {background:lightyellow;color:red;}", title="MNIST ει‘ε¨"
|
| 54 |
+
) as demo:
|
| 55 |
+
gr.HTML('<div style="font-size:12pt; text-align:center; color:yellow;"MNIST ει‘ε¨</div>')
|
| 56 |
+
|
| 57 |
+
with gr.Row():
|
| 58 |
+
with gr.Tab("γγ£γ³γγΉ"):
|
| 59 |
+
input_image1 = gr.Image(label="η»εε
₯ε", source="canvas", type="pil", image_mode="L", shape=(28,28), invert_colors=True)
|
| 60 |
+
send_btn1 = gr.Button("ζ¨θ«γγ")
|
| 61 |
+
|
| 62 |
+
with gr.Tab("η»εγγ‘γ€γ«"):
|
| 63 |
+
input_image2 = gr.Image(label="η»εε
₯ε", type="pil", image_mode="L", shape=(28, 28), invert_colors=True)
|
| 64 |
+
send_btn2 = gr.Button("ζ¨θ«γγ")
|
| 65 |
+
gr.Examples(['examples/sample2.png', 'examples/sample4.png'], inputs=input_image2)
|
| 66 |
+
|
| 67 |
+
output_label=gr.Label(label="ζ¨θ«η’Ίη", num_top_classes=3)
|
| 68 |
+
|
| 69 |
+
send_btn1.click(fn=predict, inputs=input_image1, outputs=output_label)
|
| 70 |
+
send_btn2.click(fn=predict, inputs=input_image2, outputs=output_label)
|
| 71 |
+
|
| 72 |
+
# demo.queue(concurrency_count=3)
|
| 73 |
+
demo.launch()
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
### EOF ###
|