from ailab_crs import NLP_tasks_crs, Prompt_engineering_crs import gradio as gr from googletrans import LANGUAGES supported_langs = list(LANGUAGES.values()) def main(): nlp_tasks = NLP_tasks_crs() with gr.Blocks() as demo: gr.Markdown("# 🧠NaanhAIšŸ’”") with gr.Row(): with gr.Column(): text = gr.Textbox(label="Your Query", lines=8) with gr.Column(): with gr.Accordion("Other Parameters For Translation or Summarization Tasks", open= True): language = gr.Dropdown(choices=supported_langs, label="Select Target Language", value="english") style = gr.Textbox(label="Choose Your Style", value = "polite") # style = gr.Dropdown(choices= ["polite", "sad", "happy", "scientific", "religious"], value= "polite") with gr.Row(scale=5): with gr.Column(scale=1, min_width=1): btn = gr.Button("Q&A") with gr.Column(scale=2, min_width=1): btn1 = gr.Button("Translator") with gr.Column(scale=2, min_width=1): btn2 = gr.Button("Summarizer") with gr.Column(scale=2, min_width=1): btn3 = gr.Button("Translator_Summarizer") answer = gr.Textbox(label="AI Answer", lines=2) btn.click( fn= nlp_tasks.question_answer, inputs= text, outputs=answer ) btn1.click( fn= nlp_tasks.translator, inputs= [text, language, style], outputs=answer ) btn2.click( fn= nlp_tasks.summarization, inputs= text, outputs=answer ) btn3.click( fn= nlp_tasks.translator_summarization, inputs= [text, language, style], outputs=answer ) demo.launch(share=True) # demo.launch(mcp_server=True) if __name__ == "__main__": main()