MMEdit / models /diffusion.py
CocoBro's picture
init space
c14d03d
from typing import Sequence
import random
from typing import Any
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
import diffusers.schedulers as noise_schedulers
from diffusers.schedulers.scheduling_utils import SchedulerMixin
from diffusers.utils.torch_utils import randn_tensor
from models.autoencoder.autoencoder_base import AutoEncoderBase
from models.content_encoder.content_encoder import ContentEncoder
from models.content_adapter import ContentAdapterBase, ContentEncoderAdapterMixin
import soundfile as sf
from models.common import (
LoadPretrainedBase, CountParamsBase, SaveTrainableParamsBase,
)
from utils.torch_utilities import (
create_alignment_path, create_mask_from_length, loss_with_mask,
trim_or_pad_length
)
class DiffusionMixin:
def __init__(
self,
noise_scheduler_name: str = "stabilityai/stable-diffusion-2-1",
snr_gamma: float = None,
cfg_drop_ratio: float = 0.2
) -> None:
self.noise_scheduler_name = noise_scheduler_name
self.snr_gamma = snr_gamma
self.classifier_free_guidance = cfg_drop_ratio > 0.0
self.cfg_drop_ratio = cfg_drop_ratio
self.noise_scheduler = noise_schedulers.DDPMScheduler.from_pretrained(
self.noise_scheduler_name, subfolder="scheduler"
)
def compute_snr(self, timesteps) -> torch.Tensor:
"""
Computes SNR as per https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849
"""
alphas_cumprod = self.noise_scheduler.alphas_cumprod
sqrt_alphas_cumprod = alphas_cumprod**0.5
sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod)**0.5
# Expand the tensors.
# Adapted from https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L1026
sqrt_alphas_cumprod = sqrt_alphas_cumprod.to(device=timesteps.device
)[timesteps].float()
while len(sqrt_alphas_cumprod.shape) < len(timesteps.shape):
sqrt_alphas_cumprod = sqrt_alphas_cumprod[..., None]
alpha = sqrt_alphas_cumprod.expand(timesteps.shape)
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod.to(
device=timesteps.device
)[timesteps].float()
while len(sqrt_one_minus_alphas_cumprod.shape) < len(timesteps.shape):
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod[...,
None]
sigma = sqrt_one_minus_alphas_cumprod.expand(timesteps.shape)
# Compute SNR.
snr = (alpha / sigma)**2
return snr
def get_timesteps(
self,
batch_size: int,
device: torch.device,
training: bool = True
) -> torch.Tensor:
if training:
timesteps = torch.randint(
0,
self.noise_scheduler.config.num_train_timesteps,
(batch_size, ),
device=device
)
else:
# validation on half of the total timesteps
timesteps = (self.noise_scheduler.config.num_train_timesteps //
2) * torch.ones((batch_size, ),
dtype=torch.int64,
device=device)
timesteps = timesteps.long()
return timesteps
def get_input_target_and_timesteps(
self,
latent: torch.Tensor,
training: bool,
):
batch_size = latent.shape[0]
device = latent.device
num_train_timesteps = self.noise_scheduler.config.num_train_timesteps
self.noise_scheduler.set_timesteps(num_train_timesteps, device=device)
timesteps = self.get_timesteps(batch_size, device, training=training)
noise = torch.randn_like(latent)
noisy_latent = self.noise_scheduler.add_noise(latent, noise, timesteps)
target = self.get_target(latent, noise, timesteps)
return noisy_latent, target, timesteps
def get_target(
self, latent: torch.Tensor, noise: torch.Tensor,
timesteps: torch.Tensor
) -> torch.Tensor:
"""
Get the target for loss depending on the prediction type
"""
if self.noise_scheduler.config.prediction_type == "epsilon":
target = noise
elif self.noise_scheduler.config.prediction_type == "v_prediction":
target = self.noise_scheduler.get_velocity(
latent, noise, timesteps
)
else:
raise ValueError(
f"Unknown prediction type {self.noise_scheduler.config.prediction_type}"
)
return target
def loss_with_snr(
self,
pred: torch.Tensor,
target: torch.Tensor,
timesteps: torch.Tensor,
mask: torch.Tensor,
reduce: bool = True
) -> torch.Tensor:
if self.snr_gamma is None:
loss = F.mse_loss(pred.float(), target.float(), reduction="none")
loss = loss_with_mask(loss, mask, reduce=reduce)
else:
# Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556.
# Adapted from https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py#L1006
snr = self.compute_snr(timesteps)
mse_loss_weights = torch.stack(
[
snr,
self.snr_gamma * torch.ones_like(timesteps),
],
dim=1,
).min(dim=1)[0]
# division by (snr + 1) does not work well, not clear about the reason
mse_loss_weights = mse_loss_weights / snr
loss = F.mse_loss(pred.float(), target.float(), reduction="none")
loss = loss_with_mask(loss, mask, reduce=False) * mse_loss_weights
if reduce:
loss = loss.mean()
return loss
def rescale_cfg(
self, pred_cond: torch.Tensor, pred_cfg: torch.Tensor,
guidance_rescale: float
):
"""
Rescale `pred_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
"""
std_cond = pred_cond.std(
dim=list(range(1, pred_cond.ndim)), keepdim=True
)
std_cfg = pred_cfg.std(dim=list(range(1, pred_cfg.ndim)), keepdim=True)
pred_rescaled = pred_cfg * (std_cond / std_cfg)
pred_cfg = guidance_rescale * pred_rescaled + (
1 - guidance_rescale
) * pred_cfg
return pred_cfg
class SingleTaskCrossAttentionAudioDiffusion(
LoadPretrainedBase, CountParamsBase, SaveTrainableParamsBase,
DiffusionMixin, ContentEncoderAdapterMixin
):
def __init__(
self,
autoencoder: AutoEncoderBase,
content_encoder: ContentEncoder,
backbone: nn.Module,
content_dim: int,
noise_scheduler_name: str = "stabilityai/stable-diffusion-2-1",
snr_gamma: float = None,
cfg_drop_ratio: float = 0.2,
):
nn.Module.__init__(self)
DiffusionMixin.__init__(
self, noise_scheduler_name, snr_gamma, cfg_drop_ratio
)
ContentEncoderAdapterMixin.__init__(
self, content_encoder=content_encoder
)
self.autoencoder = autoencoder
for param in self.autoencoder.parameters():
param.requires_grad = False
if hasattr(self.content_encoder, "audio_encoder"):
self.content_encoder.audio_encoder.model = self.autoencoder
self.backbone = backbone
self.dummy_param = nn.Parameter(torch.empty(0))
def forward(
self, content: list[Any], task: list[str],
waveform: torch.Tensor, waveform_lengths: torch.Tensor, **kwargs
):
device = self.dummy_param.device
self.autoencoder.eval()
self.content_encoder.eval()
with torch.no_grad():
latent, latent_mask = self.autoencoder.encode(
waveform.unsqueeze(1), waveform_lengths,pad_latent_len=500
)
with torch.no_grad():
content_dict = self.content_encoder.encode_content(content, task, device)
context, context_mask = content_dict["content"], content_dict[
"content_mask"]
time_aligned_content = content_dict["length_aligned_content"]
time_aligned_content_mask = content_dict[
"time_aligned_content_mask"
]
latent_mask = time_aligned_content_mask.to(device)
if self.training and self.classifier_free_guidance:
mask_indices = [
k for k in range(len(waveform))
if random.random() < self.cfg_drop_ratio
]
if len(mask_indices) > 0:
context[mask_indices] = 0
# dont mask!
# time_aligned_content[mask_indices] = 0
noisy_latent, target, timesteps = self.get_input_target_and_timesteps(
latent, self.training
)
pred: torch.Tensor = self.backbone(
x=noisy_latent,
timesteps=timesteps,
time_aligned_context=time_aligned_content,
context=context,
x_mask=latent_mask,
context_mask=context_mask
)
pred = pred.transpose(1, self.autoencoder.time_dim)
target = target.transpose(1, self.autoencoder.time_dim)
loss = self.loss_with_snr(pred, target, timesteps, latent_mask)
return loss
def prepare_latent(
self, batch_size: int, scheduler: SchedulerMixin,
latent_shape: Sequence[int], dtype: torch.dtype, device: str
):
shape = (batch_size, *latent_shape)
latent = randn_tensor(
shape, generator=None, device=device, dtype=dtype
)
# scale the initial noise by the standard deviation required by the scheduler
latent = latent * scheduler.init_noise_sigma
return latent
def iterative_denoise(
self,
latent: torch.Tensor,
scheduler: SchedulerMixin,
verbose: bool,
cfg: bool,
cfg_scale: float,
cfg_rescale: float,
backbone_input: dict,
):
timesteps = scheduler.timesteps
num_steps = len(timesteps)
num_warmup_steps = len(timesteps) - num_steps * scheduler.order
progress_bar = tqdm(range(num_steps), disable=not verbose)
for i, timestep in enumerate(timesteps):
# expand the latent if we are doing classifier free guidance
if cfg:
latent_input = torch.cat([latent, latent])
else:
latent_input = latent
latent_input = scheduler.scale_model_input(latent_input, timestep)
# print(latent_input.shape)
noise_pred = self.backbone(
x=latent_input, timesteps=timestep, **backbone_input
)
# perform guidance
if cfg:
noise_pred_uncond, noise_pred_content = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + cfg_scale * (
noise_pred_content - noise_pred_uncond
)
if cfg_rescale != 0.0:
noise_pred = self.rescale_cfg(
noise_pred_content, noise_pred, cfg_rescale
)
# compute the previous noisy sample x_t -> x_t-1
latent = scheduler.step(noise_pred, timestep, latent).prev_sample
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and
(i + 1) % scheduler.order == 0):
progress_bar.update(1)
progress_bar.close()
return latent
@torch.no_grad()
def inference(
self,
content: list[Any],
task: list[str],
scheduler: SchedulerMixin,
num_steps: int = 50,
guidance_scale: float = 3.0,
guidance_rescale: float = 0.0,
disable_progress: bool = True,
mask_time_aligned_content: bool = True, # 新增参数
**kwargs
):
device = self.dummy_param.device
classifier_free_guidance = guidance_scale > 1.0
batch_size = len(content)
content_dict = self.content_encoder.encode_content(content, task, device)
context, context_mask = content_dict["content"], content_dict[
"content_mask"]
time_aligned_content = content_dict["length_aligned_content"]
time_aligned_content_mask = content_dict[
"time_aligned_content_mask"
]
B, T, C = time_aligned_content.shape
latent_shape = (C, T) # 128, 500
latent_mask=time_aligned_content_mask.to(device)
if classifier_free_guidance:
if mask_time_aligned_content:
uncond_time_aligned_content = torch.zeros_like(time_aligned_content)
else:
uncond_time_aligned_content = time_aligned_content.detach().clone()
uncond_context = torch.zeros_like(context)
uncond_context_mask = context_mask.detach().clone()
time_aligned_content = torch.cat([
uncond_time_aligned_content, time_aligned_content
])
context = torch.cat([uncond_context, context])
context_mask = torch.cat([uncond_context_mask, context_mask])
latent_mask = torch.cat([
latent_mask, latent_mask.detach().clone()
])
scheduler.set_timesteps(num_steps, device=device)
latent = self.prepare_latent(
batch_size, scheduler, latent_shape, context.dtype, device
)
latent = self.iterative_denoise(
latent=latent,
scheduler=scheduler,
verbose=not disable_progress,
cfg=classifier_free_guidance,
cfg_scale=guidance_scale,
cfg_rescale=guidance_rescale,
backbone_input={
"x_mask": latent_mask,
"context": context,
"context_mask": context_mask,
"time_aligned_context": time_aligned_content,
}
)
waveform = self.autoencoder.decode(latent,latent_mask)
return waveform