Spaces:
Sleeping
Sleeping
| #!/usr/bin/env python | |
| from __future__ import annotations | |
| import os | |
| import random | |
| import gradio as gr | |
| import numpy as np | |
| import PIL.Image | |
| import requests | |
| import spaces | |
| import torch | |
| from diffusers import AutoencoderKL, DiffusionPipeline | |
| DESCRIPTION = "# AI 作画" | |
| if not torch.cuda.is_available(): | |
| DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>" | |
| MAX_SEED = np.iinfo(np.int32).max | |
| CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1" | |
| MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1024")) | |
| USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1" | |
| ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1" | |
| ENABLE_REFINER = os.getenv("ENABLE_REFINER", "1") == "1" | |
| device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
| if torch.cuda.is_available(): | |
| vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) | |
| pipe = DiffusionPipeline.from_pretrained( | |
| "stabilityai/stable-diffusion-xl-base-1.0", | |
| vae=vae, | |
| torch_dtype=torch.float16, | |
| use_safetensors=True, | |
| variant="fp16", | |
| ) | |
| if ENABLE_REFINER: | |
| refiner = DiffusionPipeline.from_pretrained( | |
| "stabilityai/stable-diffusion-xl-refiner-1.0", | |
| vae=vae, | |
| torch_dtype=torch.float16, | |
| use_safetensors=True, | |
| variant="fp16", | |
| ) | |
| if ENABLE_CPU_OFFLOAD: | |
| pipe.enable_model_cpu_offload() | |
| if ENABLE_REFINER: | |
| refiner.enable_model_cpu_offload() | |
| else: | |
| pipe.to(device) | |
| if ENABLE_REFINER: | |
| refiner.to(device) | |
| if USE_TORCH_COMPILE: | |
| pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) | |
| if ENABLE_REFINER: | |
| refiner.unet = torch.compile(refiner.unet, mode="reduce-overhead", fullgraph=True) | |
| def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| return seed | |
| def translateEN(zh): | |
| if zh: | |
| result = requests.post( | |
| "https://api-free.deepl.com/v2/translate", | |
| params={ | |
| "auth_key": "e8b4d428-ada5-3f8d-f965-bad01e8a06c1:fx", | |
| "target_lang": "EN-US", | |
| "text": zh}) | |
| return result.json()["translations"][0]["text"] | |
| def process_text(prompt): | |
| if prompt: | |
| print("中文提示词: \n", prompt) | |
| prompt_trans = translateEN(prompt) | |
| print("prompt: \n", prompt_trans) | |
| return prompt_trans | |
| def generate( | |
| prompt: str, | |
| # size_option: str = "竖版", | |
| negative_prompt: str = "", | |
| prompt_2: str = "", | |
| negative_prompt_2: str = "", | |
| use_negative_prompt: bool = False, | |
| use_prompt_2: bool = False, | |
| use_negative_prompt_2: bool = False, | |
| seed: int = 0, | |
| width: int = 736, | |
| height: int = 1024, | |
| guidance_scale_base: float = 5.0, | |
| guidance_scale_refiner: float = 5.0, | |
| num_inference_steps_base: int = 25, | |
| num_inference_steps_refiner: int = 25, | |
| apply_refiner: bool = False, | |
| ) -> PIL.Image.Image: | |
| generator = torch.Generator().manual_seed(seed) | |
| if not use_negative_prompt: | |
| negative_prompt = None # type: ignore | |
| if not use_prompt_2: | |
| prompt_2 = None # type: ignore | |
| if not use_negative_prompt_2: | |
| negative_prompt_2 = None # type: ignore | |
| # if size_option == "横版": | |
| # width, height = 1024, 736 | |
| # elif size_option == "竖版": | |
| # width, height = 736, 1024 | |
| # elif size_option == "方形": | |
| # width, height = 736, 736 | |
| # else: | |
| # width, height = 736, 1024 # 可以定义一个默认值 | |
| # process_text("里面做一个测试") | |
| # print("prompt是:", prompt) | |
| # print("negative_prompt是:", negative_prompt) | |
| # print("prompt_2是:", prompt_2) | |
| # print("negative_prompt_2是:", negative_prompt_2) | |
| if not apply_refiner: | |
| return pipe( | |
| prompt=process_text(prompt), | |
| negative_prompt=process_text(negative_prompt), | |
| prompt_2=process_text(prompt_2), | |
| negative_prompt_2=process_text(negative_prompt_2), | |
| width=width, | |
| height=height, | |
| guidance_scale=guidance_scale_base, | |
| num_inference_steps=num_inference_steps_base, | |
| generator=generator, | |
| output_type="pil", | |
| ).images[0] | |
| else: | |
| latents = pipe( | |
| prompt=process_text(prompt), | |
| negative_prompt=process_text(negative_prompt), | |
| prompt_2=process_text(prompt_2), | |
| negative_prompt_2=process_text(negative_prompt_2), | |
| width=width, | |
| height=height, | |
| guidance_scale=guidance_scale_base, | |
| num_inference_steps=num_inference_steps_base, | |
| generator=generator, | |
| output_type="latent", | |
| ).images | |
| image = refiner( | |
| prompt=process_text(prompt), | |
| negative_prompt=process_text(negative_prompt), | |
| prompt_2=process_text(prompt_2), | |
| negative_prompt_2=process_text(negative_prompt_2), | |
| guidance_scale=guidance_scale_refiner, | |
| num_inference_steps=num_inference_steps_refiner, | |
| image=latents, | |
| generator=generator, | |
| ).images[0] | |
| return image | |
| examples = [ | |
| "宇航员在丛林中,冷色调,柔和的色彩,细节,8k", | |
| "一只熊猫戴着草帽,在湖面上划船,电影风格,4K", | |
| ] | |
| with gr.Blocks(css="style.css") as demo: | |
| gr.Markdown(DESCRIPTION) | |
| gr.DuplicateButton( | |
| value="Duplicate Space for private use", | |
| elem_id="duplicate-button", | |
| visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1", | |
| ) | |
| with gr.Group(): | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="提示词", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="输入要生成的画面内容", | |
| container=False, | |
| ) | |
| run_button = gr.Button("生成", scale=0) | |
| result = gr.Image(label="生成结果", show_label=False) | |
| # # 使用 Radio 组件替代两个 Slider 组件 | |
| # size_option = gr.Radio(choices=["横版", "竖版", "方形"], label="选择尺寸", value="竖版") | |
| with gr.Accordion("高级选项", open=False): | |
| with gr.Row(): | |
| use_negative_prompt = gr.Checkbox(label="使用反向提示词", value=False) | |
| use_prompt_2 = gr.Checkbox(label="使用提示词 2", value=False) | |
| use_negative_prompt_2 = gr.Checkbox(label="使用反向提示词 2", value=False) | |
| negative_prompt = gr.Text( | |
| label="反向提示词", | |
| max_lines=1, | |
| placeholder="输入不想在画面中出现的内容,比如:“胡子”,“人群”", | |
| visible=False, | |
| ) | |
| prompt_2 = gr.Text( | |
| label="提示词 2", | |
| max_lines=1, | |
| placeholder="输入你的提示词", | |
| visible=False, | |
| ) | |
| negative_prompt_2 = gr.Text( | |
| label="反向提示词 2", | |
| max_lines=1, | |
| placeholder="输入你的反向提示词", | |
| visible=False, | |
| ) | |
| seed = gr.Slider( | |
| label="种子数", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| ) | |
| randomize_seed = gr.Checkbox(label="随机种子数", value=True) | |
| with gr.Row(): | |
| width = gr.Slider( | |
| label="宽度", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=736, | |
| ) | |
| height = gr.Slider( | |
| label="高度", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, | |
| ) | |
| apply_refiner = gr.Checkbox(label="增加精炼模型(refiner)", value=False, visible=ENABLE_REFINER) | |
| with gr.Row(): | |
| guidance_scale_base = gr.Slider( | |
| label="提示词相关性", | |
| minimum=1, | |
| maximum=20, | |
| step=0.1, | |
| value=7.5, | |
| ) | |
| num_inference_steps_base = gr.Slider( | |
| label="模型迭代步数", | |
| minimum=10, | |
| maximum=100, | |
| step=1, | |
| value=25, | |
| ) | |
| with gr.Row(visible=False) as refiner_params: | |
| guidance_scale_refiner = gr.Slider( | |
| label="提示词相关性(refiner)", | |
| minimum=1, | |
| maximum=20, | |
| step=0.1, | |
| value=7.5, | |
| ) | |
| num_inference_steps_refiner = gr.Slider( | |
| label="模型迭代步数(refiner)", | |
| minimum=10, | |
| maximum=100, | |
| step=1, | |
| value=25, | |
| ) | |
| gr.Examples( | |
| label="例子", | |
| examples=examples, | |
| inputs=prompt, | |
| outputs=result, | |
| fn=generate, | |
| cache_examples=CACHE_EXAMPLES, | |
| ) | |
| use_negative_prompt.change( | |
| fn=lambda x: gr.update(visible=x), | |
| inputs=use_negative_prompt, | |
| outputs=negative_prompt, | |
| queue=False, | |
| api_name=False, | |
| ) | |
| use_prompt_2.change( | |
| fn=lambda x: gr.update(visible=x), | |
| inputs=use_prompt_2, | |
| outputs=prompt_2, | |
| queue=False, | |
| api_name=False, | |
| ) | |
| use_negative_prompt_2.change( | |
| fn=lambda x: gr.update(visible=x), | |
| inputs=use_negative_prompt_2, | |
| outputs=negative_prompt_2, | |
| queue=False, | |
| api_name=False, | |
| ) | |
| apply_refiner.change( | |
| fn=lambda x: gr.update(visible=x), | |
| inputs=apply_refiner, | |
| outputs=refiner_params, | |
| queue=False, | |
| api_name=False, | |
| ) | |
| gr.on( | |
| triggers=[ | |
| prompt.submit, | |
| negative_prompt.submit, | |
| prompt_2.submit, | |
| negative_prompt_2.submit, | |
| run_button.click, | |
| ], | |
| fn=randomize_seed_fn, | |
| inputs=[seed, randomize_seed], | |
| outputs=seed, | |
| queue=False, | |
| api_name=False, | |
| ).then( | |
| fn=generate, | |
| inputs=[ | |
| prompt, | |
| # size_option, | |
| negative_prompt, | |
| prompt_2, | |
| negative_prompt_2, | |
| use_negative_prompt, | |
| use_prompt_2, | |
| use_negative_prompt_2, | |
| seed, | |
| width, | |
| height, | |
| guidance_scale_base, | |
| guidance_scale_refiner, | |
| num_inference_steps_base, | |
| num_inference_steps_refiner, | |
| apply_refiner, | |
| ], | |
| outputs=result, | |
| api_name="run", | |
| ) | |
| if __name__ == "__main__": | |
| demo.queue(max_size=30).launch(max_threads=2) | |