feat(app): update app functionality and connect to server - Adithya S K
Browse files
app.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
import re
|
| 2 |
import streamlit as st
|
| 3 |
import requests
|
|
@@ -6,22 +7,94 @@ from io import StringIO
|
|
| 6 |
import plotly.graph_objs as go
|
| 7 |
from huggingface_hub import HfApi
|
| 8 |
from huggingface_hub.utils import RepositoryNotFoundError, RevisionNotFoundError
|
|
|
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
def main():
|
|
|
|
| 12 |
st.set_page_config(page_title="Indic LLM Leaderboard", layout="wide")
|
| 13 |
-
|
| 14 |
title_column, refresh_column = st.columns([.92, 0.08])
|
| 15 |
with title_column:
|
| 16 |
-
st.title("Indic LLM Leaderboard")
|
| 17 |
-
|
| 18 |
-
st.markdown("Leaderboard made with π§ [Easy Eval](hhttps://github.com/adithya-s-k/easy_eval) using [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) benchmark suite.")
|
| 19 |
with refresh_column:
|
| 20 |
-
st.button("Refresh", type="primary")
|
|
|
|
| 21 |
|
| 22 |
Leaderboard_tab, About_tab ,FAQ_tab, Submit_tab = st.tabs(["π
Leaderboard", "π About" , "βFAQ","π Submit"])
|
| 23 |
|
| 24 |
with Leaderboard_tab:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
title = st.text_input('Model Name', placeholder=" π Search for your model (separate multiple queries with `;`) and press ENTER...")
|
| 26 |
|
| 27 |
col1, col2 = st.columns(2)
|
|
@@ -32,15 +105,50 @@ def main():
|
|
| 32 |
with col2:
|
| 33 |
language_options = st.multiselect(
|
| 34 |
'Pick Languages',
|
| 35 |
-
['
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
| 40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
compare_models = st.multiselect(
|
| 42 |
-
'Pick
|
| 43 |
-
['
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
# About tab
|
| 46 |
with About_tab:
|
|
@@ -50,20 +158,31 @@ def main():
|
|
| 50 |
### Indic Eval
|
| 51 |
|
| 52 |
### Contribute
|
| 53 |
-
|
| 54 |
''')
|
| 55 |
|
| 56 |
# FAQ tab
|
| 57 |
with FAQ_tab:
|
| 58 |
st.markdown('''
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
with Submit_tab:
|
| 64 |
st.markdown('''
|
| 65 |
-
|
| 66 |
-
|
|
|
|
| 67 |
|
| 68 |
with st.expander(label="π Citation"):
|
| 69 |
code = '''
|
|
@@ -77,8 +196,5 @@ def main():
|
|
| 77 |
'''
|
| 78 |
st.code(code, language='python')
|
| 79 |
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
if __name__ == "__main__":
|
| 84 |
main()
|
|
|
|
| 1 |
+
import os
|
| 2 |
import re
|
| 3 |
import streamlit as st
|
| 4 |
import requests
|
|
|
|
| 7 |
import plotly.graph_objs as go
|
| 8 |
from huggingface_hub import HfApi
|
| 9 |
from huggingface_hub.utils import RepositoryNotFoundError, RevisionNotFoundError
|
| 10 |
+
from dotenv import load_dotenv
|
| 11 |
|
| 12 |
+
load_dotenv()
|
| 13 |
+
|
| 14 |
+
SERVER_URL = os.getenv("SERVER_URL")
|
| 15 |
+
|
| 16 |
+
def get_data():
|
| 17 |
+
response = requests.get(SERVER_URL)
|
| 18 |
+
data = response.json()
|
| 19 |
+
return data
|
| 20 |
|
| 21 |
def main():
|
| 22 |
+
|
| 23 |
st.set_page_config(page_title="Indic LLM Leaderboard", layout="wide")
|
| 24 |
+
|
| 25 |
title_column, refresh_column = st.columns([.92, 0.08])
|
| 26 |
with title_column:
|
| 27 |
+
st.title("Indic LLM Leaderboard (Ξ±)")
|
| 28 |
+
st.markdown("The Indic Eval Leaderboard utilizes the [indic_eval](https://github.com/adithya-s-k/indic_eval) evaluation framework , incorporating SOTA translated benchmarks like ARC, Hellaswag, MMLU, among others. Supporting 7 Indic languages, it offers a comprehensive platform for assessing model performance and comparing results within the Indic language modeling landscape.")
|
|
|
|
| 29 |
with refresh_column:
|
| 30 |
+
if st.button("Refresh", type="primary"):
|
| 31 |
+
data = get_data()
|
| 32 |
|
| 33 |
Leaderboard_tab, About_tab ,FAQ_tab, Submit_tab = st.tabs(["π
Leaderboard", "π About" , "βFAQ","π Submit"])
|
| 34 |
|
| 35 |
with Leaderboard_tab:
|
| 36 |
+
data = get_data()
|
| 37 |
+
|
| 38 |
+
table_data = []
|
| 39 |
+
all_models = []
|
| 40 |
+
|
| 41 |
+
for item in data:
|
| 42 |
+
model_name = item.get("name")
|
| 43 |
+
language = item.get("language")
|
| 44 |
+
try:
|
| 45 |
+
ALL = item["result"]["all"]["acc_norm"]
|
| 46 |
+
except KeyError:
|
| 47 |
+
ALL = None
|
| 48 |
+
try:
|
| 49 |
+
ARC_Easy = item["result"]["ARC-Easy"]["acc_norm"]
|
| 50 |
+
except KeyError:
|
| 51 |
+
ARC_Easy = None
|
| 52 |
+
try:
|
| 53 |
+
ARC_Challenge = item["result"]["ARC-Challenge"]["acc_norm"]
|
| 54 |
+
except KeyError:
|
| 55 |
+
ARC_Challenge = None
|
| 56 |
+
try:
|
| 57 |
+
Hellaswag = item["result"]["Hellaswag"]["acc_norm"]
|
| 58 |
+
except KeyError:
|
| 59 |
+
Hellaswag = None
|
| 60 |
+
try:
|
| 61 |
+
Boolq = item["result"]["Boolq"]["acc_norm"]
|
| 62 |
+
except KeyError:
|
| 63 |
+
Boolq = None
|
| 64 |
+
try:
|
| 65 |
+
MMLU = item["result"]["MMLU"]["acc_norm"]
|
| 66 |
+
except KeyError:
|
| 67 |
+
MMLU = None
|
| 68 |
+
try:
|
| 69 |
+
Winograde = item["result"]["Winograde"]["acc_norm"]
|
| 70 |
+
except KeyError:
|
| 71 |
+
Winograde = None
|
| 72 |
+
try:
|
| 73 |
+
Translation = item["result"]["Translation"]["acc_norm"]
|
| 74 |
+
except KeyError:
|
| 75 |
+
Translation = None
|
| 76 |
+
try:
|
| 77 |
+
Generation = item["result"]["Generation"]["acc_norm"]
|
| 78 |
+
except KeyError:
|
| 79 |
+
Generation = None
|
| 80 |
+
|
| 81 |
+
all_models.append(model_name)
|
| 82 |
+
table_data.append({
|
| 83 |
+
"Model Name": model_name,
|
| 84 |
+
"Language": language,
|
| 85 |
+
"Avergae": ALL,
|
| 86 |
+
"ARC-Easy": ARC_Easy,
|
| 87 |
+
"ARC-Challenge": ARC_Challenge,
|
| 88 |
+
"Hellaswag": Hellaswag,
|
| 89 |
+
"Boolq": Boolq,
|
| 90 |
+
"MMLU": MMLU,
|
| 91 |
+
"Winograde": Winograde,
|
| 92 |
+
"Translation": Translation,
|
| 93 |
+
"Generation": Generation
|
| 94 |
+
})
|
| 95 |
+
|
| 96 |
+
df = pd.DataFrame(table_data)
|
| 97 |
+
|
| 98 |
title = st.text_input('Model Name', placeholder=" π Search for your model (separate multiple queries with `;`) and press ENTER...")
|
| 99 |
|
| 100 |
col1, col2 = st.columns(2)
|
|
|
|
| 105 |
with col2:
|
| 106 |
language_options = st.multiselect(
|
| 107 |
'Pick Languages',
|
| 108 |
+
['kannada', 'hindi', 'tamil', 'telegu','gujarathi','marathi','malayalam'],['kannada', 'hindi', 'tamil', 'telegu','gujarathi','marathi','malayalam'])
|
| 109 |
+
|
| 110 |
+
if title:
|
| 111 |
+
if ';' in title:
|
| 112 |
+
model_names = [name.strip() for name in title.split(';')]
|
| 113 |
+
filtered_df = df[df['Model Name'].isin(model_names)]
|
| 114 |
+
else:
|
| 115 |
+
filtered_df = df[df['Model Name'].str.contains(title, case=False, na=False)]
|
| 116 |
|
| 117 |
+
filtered_df = filtered_df[filtered_df['Language'].isin(language_options)]
|
| 118 |
+
filtered_df = filtered_df[df.columns.intersection(['Model Name', 'Language'] + benchmark_options)]
|
| 119 |
+
|
| 120 |
+
# Calculate average across selected benchmark columns
|
| 121 |
+
filtered_df['Average'] = filtered_df[benchmark_options].mean(axis=1)
|
| 122 |
+
|
| 123 |
+
# Display the filtered DataFrame
|
| 124 |
+
st.dataframe(filtered_df, use_container_width=True)
|
| 125 |
+
elif benchmark_options or language_options:
|
| 126 |
+
filtered_df = df[df['Language'].isin(language_options)]
|
| 127 |
+
filtered_df = filtered_df[df.columns.intersection(['Model Name', 'Language'] + benchmark_options)]
|
| 128 |
+
|
| 129 |
+
# Calculate average across selected benchmark columns
|
| 130 |
+
filtered_df['Average'] = filtered_df[benchmark_options].mean(axis=1)
|
| 131 |
+
|
| 132 |
+
st.dataframe(filtered_df, use_container_width=True)
|
| 133 |
+
|
| 134 |
+
# Multiselect for comparing models
|
| 135 |
compare_models = st.multiselect(
|
| 136 |
+
'Pick Models to compare them',
|
| 137 |
+
df['Model Name'].unique()
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
# Display DataFrame for selected models and their scores
|
| 141 |
+
if compare_models:
|
| 142 |
+
compare_data = []
|
| 143 |
+
for model in compare_models:
|
| 144 |
+
model_data = df[df['Model Name'] == model]
|
| 145 |
+
compare_data.append(model_data)
|
| 146 |
+
if compare_data:
|
| 147 |
+
compare_df = pd.concat(compare_data)
|
| 148 |
+
compare_df['Average'] = compare_df[benchmark_options].mean(axis=1) # Calculate average
|
| 149 |
+
st.dataframe(compare_df, use_container_width=True)
|
| 150 |
+
|
| 151 |
+
|
| 152 |
|
| 153 |
# About tab
|
| 154 |
with About_tab:
|
|
|
|
| 158 |
### Indic Eval
|
| 159 |
|
| 160 |
### Contribute
|
|
|
|
| 161 |
''')
|
| 162 |
|
| 163 |
# FAQ tab
|
| 164 |
with FAQ_tab:
|
| 165 |
st.markdown('''
|
| 166 |
+
### FAQ
|
| 167 |
+
|
| 168 |
+
### SUBMISSIONS
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
### RESULTS
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
### EDITING SUBMISSIONS
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
### OTHER
|
| 178 |
+
''')
|
| 179 |
+
|
| 180 |
+
# Submit tab
|
| 181 |
with Submit_tab:
|
| 182 |
st.markdown('''
|
| 183 |
+
### Submit Your Model
|
| 184 |
+
''')
|
| 185 |
+
|
| 186 |
|
| 187 |
with st.expander(label="π Citation"):
|
| 188 |
code = '''
|
|
|
|
| 196 |
'''
|
| 197 |
st.code(code, language='python')
|
| 198 |
|
|
|
|
|
|
|
|
|
|
| 199 |
if __name__ == "__main__":
|
| 200 |
main()
|