added sort by langauge feature - Adithya S K
Browse files
app.py
CHANGED
|
@@ -8,16 +8,42 @@ import plotly.graph_objs as go
|
|
| 8 |
from huggingface_hub import HfApi
|
| 9 |
from huggingface_hub.utils import RepositoryNotFoundError, RevisionNotFoundError
|
| 10 |
from dotenv import load_dotenv
|
|
|
|
|
|
|
| 11 |
|
| 12 |
load_dotenv()
|
| 13 |
|
| 14 |
SERVER_URL = os.getenv("SERVER_URL")
|
| 15 |
|
|
|
|
| 16 |
def get_data():
|
| 17 |
response = requests.get(SERVER_URL)
|
| 18 |
data = response.json()
|
| 19 |
return data
|
| 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
def main():
|
| 22 |
|
| 23 |
st.set_page_config(page_title="Indic LLM Leaderboard", layout="wide")
|
|
@@ -65,10 +91,6 @@ def main():
|
|
| 65 |
MMLU = item["result"]["MMLU"]["acc_norm"]
|
| 66 |
except KeyError:
|
| 67 |
MMLU = None
|
| 68 |
-
try:
|
| 69 |
-
Winograde = item["result"]["Winograde"]["acc_norm"]
|
| 70 |
-
except KeyError:
|
| 71 |
-
Winograde = None
|
| 72 |
try:
|
| 73 |
Translation = item["result"]["Translation"]["acc_norm"]
|
| 74 |
except KeyError:
|
|
@@ -80,7 +102,7 @@ def main():
|
|
| 80 |
|
| 81 |
all_models.append(model_name)
|
| 82 |
table_data.append({
|
| 83 |
-
"Model
|
| 84 |
"Language": language,
|
| 85 |
"Avergae": ALL,
|
| 86 |
"ARC-Easy": ARC_Easy,
|
|
@@ -88,60 +110,99 @@ def main():
|
|
| 88 |
"Hellaswag": Hellaswag,
|
| 89 |
"Boolq": Boolq,
|
| 90 |
"MMLU": MMLU,
|
| 91 |
-
"Winograde": Winograde,
|
| 92 |
"Translation": Translation,
|
| 93 |
"Generation": Generation
|
| 94 |
})
|
| 95 |
|
| 96 |
df = pd.DataFrame(table_data)
|
| 97 |
|
| 98 |
-
title = st.text_input('Model
|
| 99 |
|
|
|
|
|
|
|
| 100 |
col1, col2 = st.columns(2)
|
| 101 |
with col1:
|
| 102 |
benchmark_options = st.multiselect(
|
| 103 |
'Pick Benchmark',
|
| 104 |
-
['ARC-Easy', 'ARC-Challenge', 'Hellaswag', 'Boolq','MMLU','
|
| 105 |
with col2:
|
| 106 |
language_options = st.multiselect(
|
| 107 |
'Pick Languages',
|
| 108 |
['kannada', 'hindi', 'tamil', 'telegu','gujarathi','marathi','malayalam'],['kannada', 'hindi', 'tamil', 'telegu','gujarathi','marathi','malayalam'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
|
| 110 |
-
if title:
|
| 111 |
-
if ';' in title:
|
| 112 |
-
model_names = [name.strip() for name in title.split(';')]
|
| 113 |
-
filtered_df = df[df['Model Name'].isin(model_names)]
|
| 114 |
-
else:
|
| 115 |
-
filtered_df = df[df['Model Name'].str.contains(title, case=False, na=False)]
|
| 116 |
-
|
| 117 |
-
filtered_df = filtered_df[filtered_df['Language'].isin(language_options)]
|
| 118 |
-
filtered_df = filtered_df[df.columns.intersection(['Model Name', 'Language'] + benchmark_options)]
|
| 119 |
-
|
| 120 |
-
# Calculate average across selected benchmark columns
|
| 121 |
-
filtered_df['Average'] = filtered_df[benchmark_options].mean(axis=1)
|
| 122 |
-
|
| 123 |
-
# Display the filtered DataFrame
|
| 124 |
-
st.dataframe(filtered_df, use_container_width=True)
|
| 125 |
-
elif benchmark_options or language_options:
|
| 126 |
-
filtered_df = df[df['Language'].isin(language_options)]
|
| 127 |
-
filtered_df = filtered_df[df.columns.intersection(['Model Name', 'Language'] + benchmark_options)]
|
| 128 |
-
|
| 129 |
-
# Calculate average across selected benchmark columns
|
| 130 |
-
filtered_df['Average'] = filtered_df[benchmark_options].mean(axis=1)
|
| 131 |
-
|
| 132 |
-
st.dataframe(filtered_df, use_container_width=True)
|
| 133 |
|
|
|
|
|
|
|
| 134 |
# Multiselect for comparing models
|
| 135 |
compare_models = st.multiselect(
|
| 136 |
'Pick Models to compare them',
|
| 137 |
-
df['Model
|
| 138 |
)
|
| 139 |
-
|
| 140 |
# Display DataFrame for selected models and their scores
|
| 141 |
if compare_models:
|
| 142 |
compare_data = []
|
| 143 |
for model in compare_models:
|
| 144 |
-
model_data = df[df['Model
|
| 145 |
compare_data.append(model_data)
|
| 146 |
if compare_data:
|
| 147 |
compare_df = pd.concat(compare_data)
|
|
|
|
| 8 |
from huggingface_hub import HfApi
|
| 9 |
from huggingface_hub.utils import RepositoryNotFoundError, RevisionNotFoundError
|
| 10 |
from dotenv import load_dotenv
|
| 11 |
+
from huggingface_hub import HfApi
|
| 12 |
+
from huggingface_hub.utils import RepositoryNotFoundError, RevisionNotFoundError
|
| 13 |
|
| 14 |
load_dotenv()
|
| 15 |
|
| 16 |
SERVER_URL = os.getenv("SERVER_URL")
|
| 17 |
|
| 18 |
+
@st.cache_data
|
| 19 |
def get_data():
|
| 20 |
response = requests.get(SERVER_URL)
|
| 21 |
data = response.json()
|
| 22 |
return data
|
| 23 |
|
| 24 |
+
@st.cache_data
|
| 25 |
+
def get_model_info(df):
|
| 26 |
+
api = HfApi()
|
| 27 |
+
|
| 28 |
+
# Initialize new columns for likes and tags
|
| 29 |
+
df['Likes'] = None
|
| 30 |
+
|
| 31 |
+
# Iterate through DataFrame rows
|
| 32 |
+
for index, row in df.iterrows():
|
| 33 |
+
model = row['Model'].strip()
|
| 34 |
+
try:
|
| 35 |
+
model_info = api.model_info(repo_id=str(model))
|
| 36 |
+
df.loc[index, 'Likes'] = f"{model_info.likes}🧡"
|
| 37 |
+
# df.loc[index, 'Tags'] = ', '.join(model_info.tags)
|
| 38 |
+
|
| 39 |
+
except (RepositoryNotFoundError, RevisionNotFoundError):
|
| 40 |
+
df.loc[index, 'Likes'] = None
|
| 41 |
+
# df.loc[index, 'Tags'] = ''
|
| 42 |
+
|
| 43 |
+
return df
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
# @st.cache_data
|
| 47 |
def main():
|
| 48 |
|
| 49 |
st.set_page_config(page_title="Indic LLM Leaderboard", layout="wide")
|
|
|
|
| 91 |
MMLU = item["result"]["MMLU"]["acc_norm"]
|
| 92 |
except KeyError:
|
| 93 |
MMLU = None
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
try:
|
| 95 |
Translation = item["result"]["Translation"]["acc_norm"]
|
| 96 |
except KeyError:
|
|
|
|
| 102 |
|
| 103 |
all_models.append(model_name)
|
| 104 |
table_data.append({
|
| 105 |
+
"Model": model_name,
|
| 106 |
"Language": language,
|
| 107 |
"Avergae": ALL,
|
| 108 |
"ARC-Easy": ARC_Easy,
|
|
|
|
| 110 |
"Hellaswag": Hellaswag,
|
| 111 |
"Boolq": Boolq,
|
| 112 |
"MMLU": MMLU,
|
|
|
|
| 113 |
"Translation": Translation,
|
| 114 |
"Generation": Generation
|
| 115 |
})
|
| 116 |
|
| 117 |
df = pd.DataFrame(table_data)
|
| 118 |
|
| 119 |
+
title = st.text_input('Model', placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...")
|
| 120 |
|
| 121 |
+
on = st.checkbox('Sort by Language')
|
| 122 |
+
|
| 123 |
col1, col2 = st.columns(2)
|
| 124 |
with col1:
|
| 125 |
benchmark_options = st.multiselect(
|
| 126 |
'Pick Benchmark',
|
| 127 |
+
['ARC-Easy', 'ARC-Challenge', 'Hellaswag', 'Boolq','MMLU','Translation','Generation'],['ARC-Easy', 'ARC-Challenge', 'Hellaswag', 'Boolq','MMLU'])
|
| 128 |
with col2:
|
| 129 |
language_options = st.multiselect(
|
| 130 |
'Pick Languages',
|
| 131 |
['kannada', 'hindi', 'tamil', 'telegu','gujarathi','marathi','malayalam'],['kannada', 'hindi', 'tamil', 'telegu','gujarathi','marathi','malayalam'])
|
| 132 |
+
if on:
|
| 133 |
+
# Loop through each selected language
|
| 134 |
+
for language in language_options:
|
| 135 |
+
filtered_df = df[df['Language'] == language]
|
| 136 |
+
# Check if the filtered dataframe is not empty
|
| 137 |
+
if not filtered_df.empty:
|
| 138 |
+
st.subheader(f"{language.capitalize()[0]}{language[1:]}")
|
| 139 |
+
filtered_df.reset_index(drop=True, inplace=True)
|
| 140 |
+
# Display filtered dataframe
|
| 141 |
+
filtered_df = get_model_info(filtered_df)
|
| 142 |
+
if title:
|
| 143 |
+
if ';' in title:
|
| 144 |
+
model_names = [name.strip() for name in title.split(';')]
|
| 145 |
+
filtered_df = df[df['Model'].isin(model_names)]
|
| 146 |
+
else:
|
| 147 |
+
filtered_df = df[df['Model'].str.contains(title, case=False, na=False)]
|
| 148 |
+
|
| 149 |
+
filtered_df = filtered_df[df.columns.intersection(['Model', 'Language'] + benchmark_options)]
|
| 150 |
+
|
| 151 |
+
# Calculate average across selected benchmark columns
|
| 152 |
+
filtered_df['Average'] = filtered_df[benchmark_options].mean(axis=1)
|
| 153 |
+
filtered_df.index += 1
|
| 154 |
+
st.dataframe(filtered_df, use_container_width=True)
|
| 155 |
+
elif benchmark_options or language_options:
|
| 156 |
+
filtered_df = filtered_df[df.columns.intersection(['Model', 'Language'] + benchmark_options)]
|
| 157 |
+
|
| 158 |
+
# Calculate average across selected benchmark columns
|
| 159 |
+
filtered_df['Average'] = filtered_df[benchmark_options].mean(axis=1)
|
| 160 |
+
|
| 161 |
+
filtered_df = get_model_info(filtered_df)
|
| 162 |
+
filtered_df.index += 1
|
| 163 |
+
st.dataframe(filtered_df, use_container_width=True)
|
| 164 |
+
# st.write('Feature activated!')
|
| 165 |
+
else:
|
| 166 |
+
|
| 167 |
+
if title:
|
| 168 |
+
if ';' in title:
|
| 169 |
+
model_names = [name.strip() for name in title.split(';')]
|
| 170 |
+
filtered_df = df[df['Model'].isin(model_names)]
|
| 171 |
+
else:
|
| 172 |
+
filtered_df = df[df['Model'].str.contains(title, case=False, na=False)]
|
| 173 |
+
|
| 174 |
+
filtered_df = filtered_df[filtered_df['Language'].isin(language_options)]
|
| 175 |
+
filtered_df = filtered_df[df.columns.intersection(['Model', 'Language'] + benchmark_options)]
|
| 176 |
+
|
| 177 |
+
# Calculate average across selected benchmark columns
|
| 178 |
+
filtered_df['Average'] = filtered_df[benchmark_options].mean(axis=1)
|
| 179 |
+
filtered_df.index += 1
|
| 180 |
+
# Display the filtered DataFrame
|
| 181 |
+
st.dataframe(filtered_df, use_container_width=True)
|
| 182 |
+
elif benchmark_options or language_options:
|
| 183 |
+
filtered_df = df[df['Language'].isin(language_options)]
|
| 184 |
+
filtered_df = filtered_df[df.columns.intersection(['Model', 'Language'] + benchmark_options)]
|
| 185 |
+
|
| 186 |
+
# Calculate average across selected benchmark columns
|
| 187 |
+
filtered_df['Average'] = filtered_df[benchmark_options].mean(axis=1)
|
| 188 |
+
|
| 189 |
+
filtered_df = get_model_info(filtered_df)
|
| 190 |
+
filtered_df.index += 1
|
| 191 |
+
st.dataframe(filtered_df, use_container_width=True)
|
| 192 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 193 |
|
| 194 |
+
|
| 195 |
+
|
| 196 |
# Multiselect for comparing models
|
| 197 |
compare_models = st.multiselect(
|
| 198 |
'Pick Models to compare them',
|
| 199 |
+
df['Model'].unique()
|
| 200 |
)
|
|
|
|
| 201 |
# Display DataFrame for selected models and their scores
|
| 202 |
if compare_models:
|
| 203 |
compare_data = []
|
| 204 |
for model in compare_models:
|
| 205 |
+
model_data = df[df['Model'] == model]
|
| 206 |
compare_data.append(model_data)
|
| 207 |
if compare_data:
|
| 208 |
compare_df = pd.concat(compare_data)
|