Spaces:
Sleeping
Sleeping
File size: 24,188 Bytes
0efdb24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import copy
import os
from typing import Tuple
import cv2
import matplotlib
import numpy as np
import requests
import trimesh
from scipy.spatial.transform import Rotation
def remove_unreferenced_vertices(
faces: np.ndarray, *vertice_attrs, return_indices: bool = False
) -> Tuple[np.ndarray, ...]:
"""
Remove unreferenced vertices of a mesh.
Unreferenced vertices are removed, and the face indices are updated accordingly.
Args:
faces (np.ndarray): [T, P] face indices
*vertice_attrs: vertex attributes
Returns:
faces (np.ndarray): [T, P] face indices
*vertice_attrs: vertex attributes
indices (np.ndarray, optional): [N] indices of vertices that are kept. Defaults to None.
"""
P = faces.shape[-1]
fewer_indices, inv_map = np.unique(faces, return_inverse=True)
faces = inv_map.astype(np.int32).reshape(-1, P)
ret = [faces]
for attr in vertice_attrs:
ret.append(attr[fewer_indices])
if return_indices:
ret.append(fewer_indices)
return tuple(ret)
def triangulate(
faces: np.ndarray, vertices: np.ndarray = None, backslash: np.ndarray = None
) -> np.ndarray:
"""
Triangulate a polygonal mesh.
Args:
faces (np.ndarray): [L, P] polygonal faces
vertices (np.ndarray, optional): [N, 3] 3-dimensional vertices.
If given, the triangulation is performed according to the distance
between vertices. Defaults to None.
backslash (np.ndarray, optional): [L] boolean array indicating
how to triangulate the quad faces. Defaults to None.
Returns:
(np.ndarray): [L * (P - 2), 3] triangular faces
"""
if faces.shape[-1] == 3:
return faces
P = faces.shape[-1]
if vertices is not None:
assert faces.shape[-1] == 4, "now only support quad mesh"
if backslash is None:
backslash = np.linalg.norm(
vertices[faces[:, 0]] - vertices[faces[:, 2]], axis=-1
) < np.linalg.norm(vertices[faces[:, 1]] - vertices[faces[:, 3]], axis=-1)
if backslash is None:
loop_indice = np.stack(
[
np.zeros(P - 2, dtype=int),
np.arange(1, P - 1, 1, dtype=int),
np.arange(2, P, 1, dtype=int),
],
axis=1,
)
return faces[:, loop_indice].reshape((-1, 3))
else:
assert faces.shape[-1] == 4, "now only support quad mesh"
faces = np.where(
backslash[:, None],
faces[:, [0, 1, 2, 0, 2, 3]],
faces[:, [0, 1, 3, 3, 1, 2]],
).reshape((-1, 3))
return faces
def image_mesh(
*image_attrs: np.ndarray,
mask: np.ndarray = None,
tri: bool = False,
return_indices: bool = False,
) -> Tuple[np.ndarray, ...]:
"""
Get a mesh regarding image pixel uv coordinates as vertices and image grid as faces.
Args:
*image_attrs (np.ndarray): image attributes in shape (height, width, [channels])
mask (np.ndarray, optional): binary mask of shape (height, width), dtype=bool. Defaults to None.
Returns:
faces (np.ndarray): faces connecting neighboring pixels. shape (T, 4) if tri is False, else (T, 3)
*vertex_attrs (np.ndarray): vertex attributes in corresponding order with input image_attrs
indices (np.ndarray, optional): indices of vertices in the original mesh
"""
assert (len(image_attrs) > 0) or (
mask is not None
), "At least one of image_attrs or mask should be provided"
height, width = next(image_attrs).shape[:2] if mask is None else mask.shape
assert all(
img.shape[:2] == (height, width) for img in image_attrs
), "All image_attrs should have the same shape"
row_faces = np.stack(
[
np.arange(0, width - 1, dtype=np.int32),
np.arange(width, 2 * width - 1, dtype=np.int32),
np.arange(1 + width, 2 * width, dtype=np.int32),
np.arange(1, width, dtype=np.int32),
],
axis=1,
)
faces = (
np.arange(0, (height - 1) * width, width, dtype=np.int32)[:, None, None]
+ row_faces[None, :, :]
).reshape((-1, 4))
if mask is None:
if tri:
faces = triangulate(faces)
ret = [faces, *(img.reshape(-1, *img.shape[2:]) for img in image_attrs)]
if return_indices:
ret.append(np.arange(height * width, dtype=np.int32))
return tuple(ret)
else:
quad_mask = (
mask[:-1, :-1] & mask[1:, :-1] & mask[1:, 1:] & mask[:-1, 1:]
).ravel()
faces = faces[quad_mask]
if tri:
faces = triangulate(faces)
return remove_unreferenced_vertices(
faces,
*(x.reshape(-1, *x.shape[2:]) for x in image_attrs),
return_indices=return_indices,
)
def predictions_to_glb(
predictions,
filter_by_frames="all",
mask_black_bg=False,
mask_white_bg=False,
show_cam=True,
mask_ambiguous=False,
as_mesh=True,
) -> trimesh.Scene:
"""
Converts MapAnything predictions to a 3D scene represented as a GLB file.
Args:
predictions (dict): Dictionary containing model predictions with keys:
- world_points: 3D point coordinates (S, H, W, 3)
- images: Input images (S, H, W, 3)
- extrinsic: Camera extrinsic matrices (S, 3, 4)
filter_by_frames (str): Frame filter specification (default: "all")
mask_black_bg (bool): Mask out black background pixels (default: False)
mask_white_bg (bool): Mask out white background pixels (default: False)
show_cam (bool): Include camera visualization (default: True)
mask_ambiguous (bool): Apply final mask to filter ambiguous predictions (default: False)
as_mesh (bool): Represent the data as a mesh instead of point cloud (default: False)
Returns:
trimesh.Scene: Processed 3D scene containing point cloud/mesh and cameras
Raises:
ValueError: If input predictions structure is invalid
"""
if not isinstance(predictions, dict):
raise ValueError("predictions must be a dictionary")
print("Building GLB scene")
selected_frame_idx = None
if filter_by_frames != "all" and filter_by_frames != "All":
try:
# Extract the index part before the colon
selected_frame_idx = int(filter_by_frames.split(":")[0])
except (ValueError, IndexError):
pass
# Always use Pointmap Branch
print("Using Pointmap Branch")
if "world_points" not in predictions:
raise ValueError(
"world_points not found in predictions. Pointmap Branch requires 'world_points' key. "
"Depthmap and Camera branches have been removed."
)
pred_world_points = predictions["world_points"]
# Get images from predictions
images = predictions["images"]
# Use extrinsic matrices instead of pred_extrinsic_list
camera_matrices = predictions["extrinsic"]
if selected_frame_idx is not None:
pred_world_points = pred_world_points[selected_frame_idx][None]
images = images[selected_frame_idx][None]
camera_matrices = camera_matrices[selected_frame_idx][None]
vertices_3d = pred_world_points.reshape(-1, 3)
# Handle different image formats - check if images need transposing
if images.ndim == 4 and images.shape[1] == 3: # NCHW format
colors_rgb = np.transpose(images, (0, 2, 3, 1))
else: # Assume already in NHWC format
colors_rgb = images
colors_rgb = (colors_rgb.reshape(-1, 3) * 255).astype(np.uint8)
# Create mask for filtering
mask = np.ones(len(vertices_3d), dtype=bool)
final_mask = predictions["final_mask"].reshape(-1)
if mask_black_bg:
black_bg_mask = colors_rgb.sum(axis=1) >= 16
mask = mask & black_bg_mask
if mask_white_bg:
# Filter out white background pixels (RGB values close to white)
# Consider pixels white if all RGB values are above 240
white_bg_mask = (
(colors_rgb[:, 0] > 240)
& (colors_rgb[:, 1] > 240)
& (colors_rgb[:, 2] > 240)
)
mask = mask & ~white_bg_mask
# Use final_mask when mask_ambiguous is checked
if mask_ambiguous:
mask = mask & final_mask
vertices_3d = vertices_3d[mask].copy()
colors_rgb = colors_rgb[mask].copy()
if vertices_3d is None or np.asarray(vertices_3d).size == 0:
vertices_3d = np.array([[1, 0, 0]])
colors_rgb = np.array([[255, 255, 255]])
scene_scale = 1
else:
# Calculate the 5th and 95th percentiles along each axis
lower_percentile = np.percentile(vertices_3d, 5, axis=0)
upper_percentile = np.percentile(vertices_3d, 95, axis=0)
# Calculate the diagonal length of the percentile bounding box
scene_scale = np.linalg.norm(upper_percentile - lower_percentile)
colormap = matplotlib.colormaps.get_cmap("gist_rainbow")
# Initialize a 3D scene
scene_3d = trimesh.Scene()
# Add point cloud data to the scene
if as_mesh:
# Create mesh from pointcloud
# try:
if selected_frame_idx is not None:
# Single frame case - we can create a proper mesh
H, W = pred_world_points.shape[1:3]
# Get original unfiltered data for mesh creation
original_points = pred_world_points.reshape(H, W, 3)
# Reshape original image data properly
if images.ndim == 4 and images.shape[1] == 3: # NCHW format
original_image_colors = np.transpose(images[0], (1, 2, 0))
else: # Assume already in HWC format
original_image_colors = images[0]
original_image_colors *= 255
# Get original final mask
original_final_mask = predictions["final_mask"][selected_frame_idx].reshape(
H, W
)
# Create mask based on final mask
mask = original_final_mask
# Additional background masks if needed
if mask_black_bg:
black_bg_mask = original_image_colors.sum(axis=2) >= 16
mask = mask & black_bg_mask
if mask_white_bg:
white_bg_mask = ~(
(original_image_colors[:, :, 0] > 240)
& (original_image_colors[:, :, 1] > 240)
& (original_image_colors[:, :, 2] > 240)
)
mask = mask & white_bg_mask
# Check if normals are available in predictions
vertex_normals = None
if "normal" in predictions and predictions["normal"] is not None:
# Get normals for the selected frame
frame_normals = (
predictions["normal"][selected_frame_idx]
if selected_frame_idx is not None
else predictions["normal"][0]
)
# Create faces and vertices using image_mesh with normals support
faces, vertices, vertex_colors, vertex_normals = image_mesh(
original_points * np.array([1, -1, 1], dtype=np.float32),
original_image_colors / 255.0,
frame_normals * np.array([1, -1, 1], dtype=np.float32),
mask=mask,
tri=True,
return_indices=False,
)
# Apply coordinate transformations to normals
vertex_normals = vertex_normals * np.array([1, -1, 1], dtype=np.float32)
else:
# Create faces and vertices using image_mesh without normals
faces, vertices, vertex_colors = image_mesh(
original_points * np.array([1, -1, 1], dtype=np.float32),
original_image_colors / 255.0,
mask=mask,
tri=True,
return_indices=False,
)
# vertices = vertices * np.array([1, -1, 1], dtype=np.float32)
# Create trimesh object with optional normals
mesh_data = trimesh.Trimesh(
vertices=vertices * np.array([1, -1, 1], dtype=np.float32),
faces=faces,
vertex_colors=(vertex_colors * 255).astype(np.uint8),
vertex_normals=(vertex_normals if vertex_normals is not None else None),
process=False,
)
scene_3d.add_geometry(mesh_data)
else:
# Multi-frame case - create separate meshes for each frame
print("Creating mesh for multi-frame data...")
for frame_idx in range(pred_world_points.shape[0]):
H, W = pred_world_points.shape[1:3]
# Get data for this frame
frame_points = pred_world_points[frame_idx]
frame_final_mask = predictions["final_mask"][frame_idx]
# Get frame image
if images.ndim == 4 and images.shape[1] == 3: # NCHW format
frame_image = np.transpose(images[frame_idx], (1, 2, 0))
else: # Assume already in HWC format
frame_image = images[frame_idx]
frame_image *= 255
# Create mask for this frame using final_mask
mask = frame_final_mask
# Additional background masks if needed
if mask_black_bg:
black_bg_mask = frame_image.sum(axis=2) >= 16
mask = mask & black_bg_mask
if mask_white_bg:
white_bg_mask = ~(
(frame_image[:, :, 0] > 240)
& (frame_image[:, :, 1] > 240)
& (frame_image[:, :, 2] > 240)
)
mask = mask & white_bg_mask
# Create mesh for this frame
faces, vertices, vertex_colors = image_mesh(
frame_points * np.array([1, -1, 1], dtype=np.float32),
frame_image / 255.0,
mask=mask,
tri=True,
return_indices=False,
)
vertices = vertices * np.array([1, -1, 1], dtype=np.float32)
# Create trimesh object for this frame
frame_mesh = trimesh.Trimesh(
vertices=vertices,
faces=faces,
vertex_colors=(vertex_colors * 255).astype(np.uint8),
process=False,
)
scene_3d.add_geometry(frame_mesh)
else:
point_cloud_data = trimesh.PointCloud(vertices=vertices_3d, colors=colors_rgb)
scene_3d.add_geometry(point_cloud_data)
# Prepare 4x4 matrices for camera extrinsics
num_cameras = len(camera_matrices)
if show_cam:
# Add camera models to the scene
for i in range(num_cameras):
world_to_camera = camera_matrices[i]
camera_to_world = np.linalg.inv(world_to_camera)
rgba_color = colormap(i / num_cameras)
current_color = tuple(int(255 * x) for x in rgba_color[:3])
integrate_camera_into_scene(
scene_3d, world_to_camera, current_color, scene_scale
)
# Align scene to the observation of the first camera
scene_3d = apply_scene_alignment(scene_3d, camera_matrices)
print("GLB Scene built")
return scene_3d
def integrate_camera_into_scene(
scene: trimesh.Scene,
transform: np.ndarray,
face_colors: tuple,
scene_scale: float,
):
"""
Integrates a fake camera mesh into the 3D scene.
Args:
scene (trimesh.Scene): The 3D scene to add the camera model.
transform (np.ndarray): Transformation matrix for camera positioning.
face_colors (tuple): Color of the camera face.
scene_scale (float): Scale of the scene.
"""
scene_scale = 12
cam_width = scene_scale * 0.05
cam_height = scene_scale * 0.1
# cam_width = scene_scale * 0.05
# cam_height = scene_scale * 0.1
# Create cone shape for camera
rot_45_degree = np.eye(4)
rot_45_degree[:3, :3] = Rotation.from_euler("z", 45, degrees=True).as_matrix()
rot_45_degree[2, 3] = -cam_height
opengl_transform = get_opengl_conversion_matrix()
# Combine transformations
complete_transform = transform @ opengl_transform @ rot_45_degree
camera_cone_shape = trimesh.creation.cone(cam_width, cam_height, sections=4)
# Generate mesh for the camera
slight_rotation = np.eye(4)
slight_rotation[:3, :3] = Rotation.from_euler("z", 2, degrees=True).as_matrix()
vertices_combined = np.concatenate(
[
camera_cone_shape.vertices,
0.95 * camera_cone_shape.vertices,
transform_points(slight_rotation, camera_cone_shape.vertices),
]
)
vertices_transformed = transform_points(complete_transform, vertices_combined)
mesh_faces = compute_camera_faces(camera_cone_shape)
# Add the camera mesh to the scene
camera_mesh = trimesh.Trimesh(vertices=vertices_transformed, faces=mesh_faces)
camera_mesh.visual.face_colors[:, :3] = face_colors
scene.add_geometry(camera_mesh)
def apply_scene_alignment(
scene_3d: trimesh.Scene, extrinsics_matrices: np.ndarray
) -> trimesh.Scene:
"""
Aligns the 3D scene based on the extrinsics of the first camera.
Args:
scene_3d (trimesh.Scene): The 3D scene to be aligned.
extrinsics_matrices (np.ndarray): Camera extrinsic matrices.
Returns:
trimesh.Scene: Aligned 3D scene.
"""
# Set transformations for scene alignment
opengl_conversion_matrix = get_opengl_conversion_matrix()
# Rotation matrix for alignment (180 degrees around the y-axis)
align_rotation = np.eye(4)
align_rotation[:3, :3] = Rotation.from_euler("y", 0, degrees=True).as_matrix()
# Apply transformation
initial_transformation = (
np.linalg.inv(extrinsics_matrices[0])
@ opengl_conversion_matrix
@ align_rotation
)
scene_3d.apply_transform(initial_transformation)
return scene_3d
def get_opengl_conversion_matrix() -> np.ndarray:
"""
Constructs and returns the OpenGL conversion matrix.
Returns:
numpy.ndarray: A 4x4 OpenGL conversion matrix.
"""
# Create an identity matrix
matrix = np.identity(4)
# Flip the y and z axes
matrix[1, 1] = -1
matrix[2, 2] = -1
return matrix
def transform_points(
transformation: np.ndarray, points: np.ndarray, dim: int = None
) -> np.ndarray:
"""
Applies a 4x4 transformation to a set of points.
Args:
transformation (np.ndarray): Transformation matrix.
points (np.ndarray): Points to be transformed.
dim (int, optional): Dimension for reshaping the result.
Returns:
np.ndarray: Transformed points.
"""
points = np.asarray(points)
initial_shape = points.shape[:-1]
dim = dim or points.shape[-1]
# Apply transformation
transformation = transformation.swapaxes(
-1, -2
) # Transpose the transformation matrix
points = points @ transformation[..., :-1, :] + transformation[..., -1:, :]
# Reshape the result
result = points[..., :dim].reshape(*initial_shape, dim)
return result
def compute_camera_faces(cone_shape: trimesh.Trimesh) -> np.ndarray:
"""
Computes the faces for the camera mesh.
Args:
cone_shape (trimesh.Trimesh): The shape of the camera cone.
Returns:
np.ndarray: Array of faces for the camera mesh.
"""
# Create pseudo cameras
faces_list = []
num_vertices_cone = len(cone_shape.vertices)
for face in cone_shape.faces:
if 0 in face:
continue
v1, v2, v3 = face
v1_offset, v2_offset, v3_offset = face + num_vertices_cone
v1_offset_2, v2_offset_2, v3_offset_2 = face + 2 * num_vertices_cone
faces_list.extend(
[
(v1, v2, v2_offset),
(v1, v1_offset, v3),
(v3_offset, v2, v3),
(v1, v2, v2_offset_2),
(v1, v1_offset_2, v3),
(v3_offset_2, v2, v3),
]
)
faces_list += [(v3, v2, v1) for v1, v2, v3 in faces_list]
return np.array(faces_list)
def segment_sky(image_path, onnx_session, mask_filename=None):
"""
Segments sky from an image using an ONNX model.
Thanks for the great model provided by https://github.com/xiongzhu666/Sky-Segmentation-and-Post-processing
Args:
image_path: Path to input image
onnx_session: ONNX runtime session with loaded model
mask_filename: Path to save the output mask
Returns:
np.ndarray: Binary mask where 255 indicates non-sky regions
"""
assert mask_filename is not None
image = cv2.imread(image_path)
result_map = run_skyseg(onnx_session, [320, 320], image)
# resize the result_map to the original image size
result_map_original = cv2.resize(result_map, (image.shape[1], image.shape[0]))
# Fix: Invert the mask so that 255 = non-sky, 0 = sky
# The model outputs low values for sky, high values for non-sky
output_mask = np.zeros_like(result_map_original)
output_mask[result_map_original < 32] = 255 # Use threshold of 32
os.makedirs(os.path.dirname(mask_filename), exist_ok=True)
cv2.imwrite(mask_filename, output_mask)
return output_mask
def run_skyseg(onnx_session, input_size, image):
"""
Runs sky segmentation inference using ONNX model.
Args:
onnx_session: ONNX runtime session
input_size: Target size for model input (width, height)
image: Input image in BGR format
Returns:
np.ndarray: Segmentation mask
"""
# Pre process:Resize, BGR->RGB, Transpose, PyTorch standardization, float32 cast
temp_image = copy.deepcopy(image)
resize_image = cv2.resize(temp_image, dsize=(input_size[0], input_size[1]))
x = cv2.cvtColor(resize_image, cv2.COLOR_BGR2RGB)
x = np.array(x, dtype=np.float32)
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
x = (x / 255 - mean) / std
x = x.transpose(2, 0, 1)
x = x.reshape(-1, 3, input_size[0], input_size[1]).astype("float32")
# Inference
input_name = onnx_session.get_inputs()[0].name
output_name = onnx_session.get_outputs()[0].name
onnx_result = onnx_session.run([output_name], {input_name: x})
# Post process
onnx_result = np.array(onnx_result).squeeze()
min_value = np.min(onnx_result)
max_value = np.max(onnx_result)
onnx_result = (onnx_result - min_value) / (max_value - min_value)
onnx_result *= 255
onnx_result = onnx_result.astype("uint8")
return onnx_result
def download_file_from_url(url, filename):
"""Downloads a file from a Hugging Face model repo, handling redirects."""
try:
# Get the redirect URL
response = requests.get(url, allow_redirects=False)
response.raise_for_status() # Raise HTTPError for bad requests (4xx or 5xx)
if response.status_code == 302: # Expecting a redirect
redirect_url = response.headers["Location"]
response = requests.get(redirect_url, stream=True)
response.raise_for_status()
else:
print(f"Unexpected status code: {response.status_code}")
return
with open(filename, "wb") as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
print(f"Downloaded {filename} successfully.")
except requests.exceptions.RequestException as e:
print(f"Error downloading file: {e}")
|