Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
CHANGED
|
@@ -5,11 +5,10 @@
|
|
| 5 |
# LICENSE file in the root directory of this source tree.
|
| 6 |
|
| 7 |
"""
|
| 8 |
-
MapAnything V2
|
| 9 |
-
-
|
| 10 |
-
-
|
| 11 |
-
-
|
| 12 |
-
- DBSCAN clustering for cross-view object matching
|
| 13 |
"""
|
| 14 |
|
| 15 |
import gc
|
|
@@ -18,8 +17,6 @@ import shutil
|
|
| 18 |
import sys
|
| 19 |
import time
|
| 20 |
from datetime import datetime
|
| 21 |
-
from pathlib import Path
|
| 22 |
-
from collections import defaultdict
|
| 23 |
|
| 24 |
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
|
| 25 |
|
|
@@ -28,10 +25,8 @@ import gradio as gr
|
|
| 28 |
import numpy as np
|
| 29 |
import spaces
|
| 30 |
import torch
|
| 31 |
-
import trimesh
|
| 32 |
from PIL import Image
|
| 33 |
from pillow_heif import register_heif_opener
|
| 34 |
-
from sklearn.cluster import DBSCAN
|
| 35 |
|
| 36 |
register_heif_opener()
|
| 37 |
|
|
@@ -65,10 +60,6 @@ def get_logo_base64():
|
|
| 65 |
return None
|
| 66 |
|
| 67 |
|
| 68 |
-
# ============================================================================
|
| 69 |
-
# Configuration
|
| 70 |
-
# ============================================================================
|
| 71 |
-
|
| 72 |
# MapAnything Configuration
|
| 73 |
high_level_config = {
|
| 74 |
"path": "configs/train.yaml",
|
|
@@ -89,846 +80,13 @@ high_level_config = {
|
|
| 89 |
"resolution": 518,
|
| 90 |
}
|
| 91 |
|
| 92 |
-
#
|
| 93 |
-
# 方案选择:
|
| 94 |
-
# 1. "segformer" - SegFormer (最轻量,~14MB,最快)
|
| 95 |
-
# 2. "maskformer" - MaskFormer (中等,~100MB,实例分割)
|
| 96 |
-
# 3. "grounding_sam" - GroundingDINO + SAM (最强,~110MB,文本提示)
|
| 97 |
-
|
| 98 |
-
SEGMENTATION_METHOD = "segformer" # 默认使用最轻量的方案
|
| 99 |
-
|
| 100 |
-
# SegFormer Configuration (推荐 - CPU友好)
|
| 101 |
-
SEGFORMER_MODEL_ID = "nvidia/segformer-b0-finetuned-ade-512-512" # 14MB,150类物体
|
| 102 |
-
|
| 103 |
-
# MaskFormer Configuration (备选)
|
| 104 |
-
MASKFORMER_MODEL_ID = "facebook/maskformer-swin-tiny-ade" # 100MB,实例分割
|
| 105 |
-
|
| 106 |
-
# GroundingDINO + SAM Configuration (原方案 - 需要文本提示)
|
| 107 |
-
GROUNDING_DINO_MODEL_ID = "IDEA-Research/grounding-dino-tiny"
|
| 108 |
-
GROUNDING_DINO_BOX_THRESHOLD = 0.25
|
| 109 |
-
GROUNDING_DINO_TEXT_THRESHOLD = 0.2
|
| 110 |
-
SAM_MODEL_ID = "dhkim2810/MobileSAM"
|
| 111 |
-
USE_MOBILE_SAM = True
|
| 112 |
-
|
| 113 |
-
DEFAULT_TEXT_PROMPT = "chair . table . sofa . bed . desk . cabinet"
|
| 114 |
-
|
| 115 |
-
# Common objects prompt for detection
|
| 116 |
-
COMMON_OBJECTS_PROMPT = (
|
| 117 |
-
"person . face . hand . "
|
| 118 |
-
"chair . sofa . couch . bed . table . desk . cabinet . shelf . drawer . "
|
| 119 |
-
"door . window . wall . floor . ceiling . curtain . "
|
| 120 |
-
"tv . monitor . screen . computer . laptop . keyboard . mouse . "
|
| 121 |
-
"phone . tablet . remote . "
|
| 122 |
-
"lamp . light . chandelier . "
|
| 123 |
-
"book . magazine . paper . pen . pencil . "
|
| 124 |
-
"bottle . cup . glass . mug . plate . bowl . fork . knife . spoon . "
|
| 125 |
-
"vase . plant . flower . pot . "
|
| 126 |
-
"clock . picture . frame . mirror . "
|
| 127 |
-
"pillow . cushion . blanket . towel . "
|
| 128 |
-
"bag . backpack . suitcase . "
|
| 129 |
-
"box . basket . container . "
|
| 130 |
-
"shoe . hat . coat . "
|
| 131 |
-
"toy . ball . "
|
| 132 |
-
"car . bicycle . motorcycle . bus . truck . "
|
| 133 |
-
"tree . grass . sky . cloud . sun . "
|
| 134 |
-
"dog . cat . bird . "
|
| 135 |
-
"building . house . bridge . road . street . "
|
| 136 |
-
"sign . pole . bench"
|
| 137 |
-
)
|
| 138 |
-
|
| 139 |
-
# DBSCAN clustering configuration (eps in meters)
|
| 140 |
-
DBSCAN_EPS_CONFIG = {
|
| 141 |
-
'sofa': 1.5,
|
| 142 |
-
'bed': 1.5,
|
| 143 |
-
'couch': 1.5,
|
| 144 |
-
'desk': 0.8,
|
| 145 |
-
'table': 0.8,
|
| 146 |
-
'chair': 0.6,
|
| 147 |
-
'cabinet': 0.8,
|
| 148 |
-
'window': 0.5,
|
| 149 |
-
'door': 0.6,
|
| 150 |
-
'tv': 0.6,
|
| 151 |
-
'default': 1.0
|
| 152 |
-
}
|
| 153 |
-
|
| 154 |
-
DBSCAN_MIN_SAMPLES = 1
|
| 155 |
-
|
| 156 |
-
# Quality control
|
| 157 |
-
MIN_DETECTION_CONFIDENCE = 0.35
|
| 158 |
-
MIN_MASK_AREA = 100
|
| 159 |
-
|
| 160 |
-
# Global model variables
|
| 161 |
model = None
|
| 162 |
-
grounding_dino_model = None
|
| 163 |
-
grounding_dino_processor = None
|
| 164 |
-
sam_predictor = None
|
| 165 |
-
|
| 166 |
-
# SegFormer 模型(轻量级语义分割)
|
| 167 |
-
segformer_processor = None
|
| 168 |
-
segformer_model = None
|
| 169 |
-
|
| 170 |
-
# MaskFormer 模型(实例分割)
|
| 171 |
-
maskformer_processor = None
|
| 172 |
-
maskformer_model = None
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
# ============================================================================
|
| 176 |
-
# Model Loading Functions
|
| 177 |
-
# ============================================================================
|
| 178 |
-
|
| 179 |
-
def load_segformer_model(device="cpu"):
|
| 180 |
-
"""加载 SegFormer 模型(最轻量,CPU友好)"""
|
| 181 |
-
global segformer_processor, segformer_model
|
| 182 |
-
|
| 183 |
-
if segformer_model is not None:
|
| 184 |
-
print("✅ SegFormer already loaded")
|
| 185 |
-
return
|
| 186 |
-
|
| 187 |
-
try:
|
| 188 |
-
from transformers import SegformerImageProcessor, SegformerForSemanticSegmentation
|
| 189 |
-
import os
|
| 190 |
-
|
| 191 |
-
print(f"📥 Loading SegFormer from HuggingFace: {SEGFORMER_MODEL_ID}")
|
| 192 |
-
print(f" 💡 SegFormer-B0: ~14MB, 150类物体, CPU优化")
|
| 193 |
-
|
| 194 |
-
cache_dir = os.getenv("HF_HOME", "./hf_cache")
|
| 195 |
-
|
| 196 |
-
print(f" 正在下载 processor...")
|
| 197 |
-
segformer_processor = SegformerImageProcessor.from_pretrained(
|
| 198 |
-
SEGFORMER_MODEL_ID,
|
| 199 |
-
cache_dir=cache_dir
|
| 200 |
-
)
|
| 201 |
-
|
| 202 |
-
print(f" 正在下载 model...")
|
| 203 |
-
segformer_model = SegformerForSemanticSegmentation.from_pretrained(
|
| 204 |
-
SEGFORMER_MODEL_ID,
|
| 205 |
-
cache_dir=cache_dir,
|
| 206 |
-
low_cpu_mem_usage=True
|
| 207 |
-
).to(device).eval()
|
| 208 |
-
|
| 209 |
-
print(f"✅ SegFormer loaded successfully on {device.upper()}")
|
| 210 |
-
print(f" 可识别类别: 人、家具、墙壁、地板等150类")
|
| 211 |
-
|
| 212 |
-
except Exception as e:
|
| 213 |
-
print(f"❌ SegFormer loading failed: {type(e).__name__}: {e}")
|
| 214 |
-
import traceback
|
| 215 |
-
traceback.print_exc()
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
def load_maskformer_model(device="cpu"):
|
| 219 |
-
"""加载 MaskFormer 模型(实例分割)"""
|
| 220 |
-
global maskformer_processor, maskformer_model
|
| 221 |
-
|
| 222 |
-
if maskformer_model is not None:
|
| 223 |
-
print("✅ MaskFormer already loaded")
|
| 224 |
-
return
|
| 225 |
-
|
| 226 |
-
try:
|
| 227 |
-
from transformers import MaskFormerImageProcessor, MaskFormerForInstanceSegmentation
|
| 228 |
-
import os
|
| 229 |
-
|
| 230 |
-
print(f"📥 Loading MaskFormer from HuggingFace: {MASKFORMER_MODEL_ID}")
|
| 231 |
-
print(f" 💡 MaskFormer: ~100MB, 实例分割")
|
| 232 |
-
|
| 233 |
-
cache_dir = os.getenv("HF_HOME", "./hf_cache")
|
| 234 |
-
|
| 235 |
-
print(f" 正在下载 processor...")
|
| 236 |
-
maskformer_processor = MaskFormerImageProcessor.from_pretrained(
|
| 237 |
-
MASKFORMER_MODEL_ID,
|
| 238 |
-
cache_dir=cache_dir
|
| 239 |
-
)
|
| 240 |
-
|
| 241 |
-
print(f" 正在下载 model...")
|
| 242 |
-
maskformer_model = MaskFormerForInstanceSegmentation.from_pretrained(
|
| 243 |
-
MASKFORMER_MODEL_ID,
|
| 244 |
-
cache_dir=cache_dir,
|
| 245 |
-
low_cpu_mem_usage=True
|
| 246 |
-
).to(device).eval()
|
| 247 |
-
|
| 248 |
-
print(f"✅ MaskFormer loaded successfully on {device.upper()}")
|
| 249 |
-
|
| 250 |
-
except Exception as e:
|
| 251 |
-
print(f"❌ MaskFormer loading failed: {type(e).__name__}: {e}")
|
| 252 |
-
import traceback
|
| 253 |
-
traceback.print_exc()
|
| 254 |
-
|
| 255 |
-
def load_grounding_dino_model(device="cpu"):
|
| 256 |
-
"""Load GroundingDINO model from HuggingFace (CPU优化)"""
|
| 257 |
-
global grounding_dino_model, grounding_dino_processor
|
| 258 |
-
|
| 259 |
-
if grounding_dino_model is not None:
|
| 260 |
-
print("✅ GroundingDINO already loaded")
|
| 261 |
-
return
|
| 262 |
-
|
| 263 |
-
try:
|
| 264 |
-
from transformers import AutoProcessor, AutoModelForZeroShotObjectDetection
|
| 265 |
-
import os
|
| 266 |
-
|
| 267 |
-
# 强制使用 CPU 进行分割(节省 GPU 资源)
|
| 268 |
-
seg_device = "cpu"
|
| 269 |
-
print(f"📥 Loading GroundingDINO from HuggingFace: {GROUNDING_DINO_MODEL_ID} (使用 {seg_device.upper()})")
|
| 270 |
-
|
| 271 |
-
# 设置缓存目录(HuggingFace Spaces友好)
|
| 272 |
-
cache_dir = os.getenv("HF_HOME", "./hf_cache")
|
| 273 |
-
|
| 274 |
-
# 加载模型(带重试和详细日志)
|
| 275 |
-
print(f" 正在下载 processor...")
|
| 276 |
-
grounding_dino_processor = AutoProcessor.from_pretrained(
|
| 277 |
-
GROUNDING_DINO_MODEL_ID,
|
| 278 |
-
cache_dir=cache_dir,
|
| 279 |
-
trust_remote_code=True # 允许运行远程代码
|
| 280 |
-
)
|
| 281 |
-
|
| 282 |
-
print(f" 正在下载 model...")
|
| 283 |
-
grounding_dino_model = AutoModelForZeroShotObjectDetection.from_pretrained(
|
| 284 |
-
GROUNDING_DINO_MODEL_ID,
|
| 285 |
-
cache_dir=cache_dir,
|
| 286 |
-
trust_remote_code=True,
|
| 287 |
-
low_cpu_mem_usage=True # 降低CPU内存使用
|
| 288 |
-
).to(seg_device).eval()
|
| 289 |
-
|
| 290 |
-
print(f"✅ GroundingDINO loaded successfully on {seg_device.upper()}")
|
| 291 |
-
|
| 292 |
-
except ImportError as e:
|
| 293 |
-
print(f"❌ ImportError: {e}")
|
| 294 |
-
print(f"💡 请检查 requirements.txt 是否包含 transformers 库")
|
| 295 |
-
import traceback
|
| 296 |
-
traceback.print_exc()
|
| 297 |
-
except OSError as e:
|
| 298 |
-
print(f"❌ OSError (网络/文件问题): {e}")
|
| 299 |
-
print(f"💡 可能是网络连接问题或模型仓库不可访问")
|
| 300 |
-
print(f"💡 尝试解决方案:")
|
| 301 |
-
print(f" 1. 检查 HuggingFace Spaces 的网络连接")
|
| 302 |
-
print(f" 2. 检查模型ID是否正确: {GROUNDING_DINO_MODEL_ID}")
|
| 303 |
-
print(f" 3. 确保有足够的磁盘空间")
|
| 304 |
-
import traceback
|
| 305 |
-
traceback.print_exc()
|
| 306 |
-
except Exception as e:
|
| 307 |
-
print(f"❌ GroundingDINO loading failed: {type(e).__name__}: {e}")
|
| 308 |
-
import traceback
|
| 309 |
-
traceback.print_exc()
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
def load_sam_model(device="cpu"):
|
| 313 |
-
"""Load MobileSAM model from HuggingFace (CPU优化,比SAM快60倍)"""
|
| 314 |
-
global sam_predictor
|
| 315 |
-
|
| 316 |
-
if sam_predictor is not None:
|
| 317 |
-
print("✅ SAM already loaded")
|
| 318 |
-
return
|
| 319 |
-
|
| 320 |
-
try:
|
| 321 |
-
from transformers import SamModel, SamProcessor
|
| 322 |
-
import os
|
| 323 |
-
|
| 324 |
-
# 强制使用 CPU 进行分割(MobileSAM 专为移动设备/CPU优化)
|
| 325 |
-
seg_device = "cpu"
|
| 326 |
-
print(f"📥 Loading MobileSAM from HuggingFace: {SAM_MODEL_ID} (使用 {seg_device.upper()})")
|
| 327 |
-
print(f" 💡 MobileSAM 是轻量级版本,比 SAM-huge 快60倍,只有10MB,适合CPU运行")
|
| 328 |
-
|
| 329 |
-
# 设置缓存目录
|
| 330 |
-
cache_dir = os.getenv("HF_HOME", "./hf_cache")
|
| 331 |
-
|
| 332 |
-
print(f" 正在下载 processor...")
|
| 333 |
-
sam_processor = SamProcessor.from_pretrained(
|
| 334 |
-
SAM_MODEL_ID,
|
| 335 |
-
cache_dir=cache_dir
|
| 336 |
-
)
|
| 337 |
-
|
| 338 |
-
print(f" 正在下载 model...")
|
| 339 |
-
sam_model = SamModel.from_pretrained(
|
| 340 |
-
SAM_MODEL_ID,
|
| 341 |
-
cache_dir=cache_dir,
|
| 342 |
-
low_cpu_mem_usage=True
|
| 343 |
-
).to(seg_device).eval()
|
| 344 |
-
|
| 345 |
-
# Wrap in a predictor-like interface
|
| 346 |
-
class SAMPredictor:
|
| 347 |
-
def __init__(self, model, processor, device):
|
| 348 |
-
self.model = model
|
| 349 |
-
self.processor = processor
|
| 350 |
-
self.device = device
|
| 351 |
-
self.image = None
|
| 352 |
-
|
| 353 |
-
def set_image(self, image):
|
| 354 |
-
"""Set image for prediction"""
|
| 355 |
-
if image.dtype == np.uint8:
|
| 356 |
-
self.image = Image.fromarray(image)
|
| 357 |
-
else:
|
| 358 |
-
self.image = Image.fromarray((image * 255).astype(np.uint8))
|
| 359 |
-
|
| 360 |
-
def predict(self, box, multimask_output=False):
|
| 361 |
-
"""Predict mask from box (CPU优化)"""
|
| 362 |
-
inputs = self.processor(
|
| 363 |
-
self.image,
|
| 364 |
-
input_boxes=[[[box]]],
|
| 365 |
-
return_tensors="pt"
|
| 366 |
-
)
|
| 367 |
-
# 确保在CPU上运行
|
| 368 |
-
inputs = {k: v.to(self.device) for k, v in inputs.items() if isinstance(v, torch.Tensor)}
|
| 369 |
-
|
| 370 |
-
with torch.no_grad():
|
| 371 |
-
outputs = self.model(**inputs)
|
| 372 |
-
|
| 373 |
-
masks = self.processor.image_processor.post_process_masks(
|
| 374 |
-
outputs.pred_masks.cpu(),
|
| 375 |
-
inputs["original_sizes"].cpu() if "original_sizes" in inputs else outputs.pred_masks.new_tensor([[self.image.height, self.image.width]]),
|
| 376 |
-
inputs["reshaped_input_sizes"].cpu() if "reshaped_input_sizes" in inputs else outputs.pred_masks.new_tensor([[self.image.height, self.image.width]])
|
| 377 |
-
)[0].squeeze().numpy()
|
| 378 |
-
|
| 379 |
-
if len(masks.shape) == 2:
|
| 380 |
-
masks = masks[np.newaxis, ...]
|
| 381 |
-
|
| 382 |
-
return masks, None, None
|
| 383 |
-
|
| 384 |
-
sam_predictor = SAMPredictor(sam_model, sam_processor, seg_device)
|
| 385 |
-
print(f"✅ MobileSAM loaded successfully on {seg_device.upper()}")
|
| 386 |
-
|
| 387 |
-
except ImportError as e:
|
| 388 |
-
print(f"❌ ImportError: {e}")
|
| 389 |
-
print(f"💡 请检查 requirements.txt 是否包含 transformers 库")
|
| 390 |
-
import traceback
|
| 391 |
-
traceback.print_exc()
|
| 392 |
-
except OSError as e:
|
| 393 |
-
print(f"❌ OSError (网络/文件问题): {e}")
|
| 394 |
-
print(f"💡 可能是网络连接问题或模型仓库不可访问")
|
| 395 |
-
print(f"💡 尝试解决方案:")
|
| 396 |
-
print(f" 1. 检查 HuggingFace Spaces 的网络连接")
|
| 397 |
-
print(f" 2. 检查模型ID是否正确: {SAM_MODEL_ID}")
|
| 398 |
-
print(f" 3. 确保有足够的磁盘空间")
|
| 399 |
-
import traceback
|
| 400 |
-
traceback.print_exc()
|
| 401 |
-
except Exception as e:
|
| 402 |
-
print(f"❌ SAM loading failed: {type(e).__name__}: {e}")
|
| 403 |
-
import traceback
|
| 404 |
-
traceback.print_exc()
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
# ============================================================================
|
| 408 |
-
# Segmentation Functions
|
| 409 |
-
# ============================================================================
|
| 410 |
-
|
| 411 |
-
def generate_distinct_colors(n):
|
| 412 |
-
"""Generate N visually distinct colors (RGB, 0-255)"""
|
| 413 |
-
import colorsys
|
| 414 |
-
if n == 0:
|
| 415 |
-
return []
|
| 416 |
-
|
| 417 |
-
colors = []
|
| 418 |
-
for i in range(n):
|
| 419 |
-
hue = i / max(n, 1)
|
| 420 |
-
rgb = colorsys.hsv_to_rgb(hue, 0.9, 0.95)
|
| 421 |
-
rgb_color = tuple(int(c * 255) for c in rgb)
|
| 422 |
-
colors.append(rgb_color)
|
| 423 |
-
|
| 424 |
-
return colors
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
# ============================================================================
|
| 428 |
-
# SegFormer 分割函数(简化方案)
|
| 429 |
-
# ============================================================================
|
| 430 |
-
|
| 431 |
-
def run_segformer_segmentation(image_np, device="cpu"):
|
| 432 |
-
"""使用 SegFormer 进行语义分割(最简单,CPU友好)"""
|
| 433 |
-
if segformer_model is None or segformer_processor is None:
|
| 434 |
-
print("❌ SegFormer model not loaded")
|
| 435 |
-
return []
|
| 436 |
-
|
| 437 |
-
try:
|
| 438 |
-
import torch
|
| 439 |
-
from PIL import Image
|
| 440 |
-
|
| 441 |
-
# 准备图片
|
| 442 |
-
if image_np.dtype != np.uint8:
|
| 443 |
-
image_np = (image_np * 255).astype(np.uint8)
|
| 444 |
-
image_pil = Image.fromarray(image_np)
|
| 445 |
-
|
| 446 |
-
# 推理
|
| 447 |
-
inputs = segformer_processor(images=image_pil, return_tensors="pt")
|
| 448 |
-
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 449 |
-
|
| 450 |
-
with torch.no_grad():
|
| 451 |
-
outputs = segformer_model(**inputs)
|
| 452 |
-
|
| 453 |
-
# 获取分割结果
|
| 454 |
-
logits = outputs.logits # (1, num_classes, H, W)
|
| 455 |
-
predicted_segmentation = logits.argmax(dim=1).squeeze().cpu().numpy()
|
| 456 |
-
|
| 457 |
-
# 生成实例掩码(将相同类别的连续区域分开)
|
| 458 |
-
from scipy import ndimage
|
| 459 |
-
|
| 460 |
-
# ADE20K 常见类别映射(部分)
|
| 461 |
-
ade20k_labels = {
|
| 462 |
-
5: "wall", 7: "floor", 11: "ceiling", 18: "window", 14: "door",
|
| 463 |
-
19: "table", 20: "chair", 22: "sofa", 23: "bed", 28: "cabinet",
|
| 464 |
-
34: "desk", 39: "lamp", 65: "television", 89: "shelf"
|
| 465 |
-
}
|
| 466 |
-
|
| 467 |
-
detections = []
|
| 468 |
-
masks = []
|
| 469 |
-
|
| 470 |
-
# 对每个类别提取实例
|
| 471 |
-
unique_labels = np.unique(predicted_segmentation)
|
| 472 |
-
for label_id in unique_labels:
|
| 473 |
-
if label_id == 0: # 跳过背景
|
| 474 |
-
continue
|
| 475 |
-
|
| 476 |
-
# 获取该类别的掩码
|
| 477 |
-
class_mask = (predicted_segmentation == label_id)
|
| 478 |
-
|
| 479 |
-
# 分离连通区域(不同实例)
|
| 480 |
-
labeled_mask, num_features = ndimage.label(class_mask)
|
| 481 |
-
|
| 482 |
-
for instance_id in range(1, num_features + 1):
|
| 483 |
-
instance_mask = (labeled_mask == instance_id)
|
| 484 |
-
mask_area = instance_mask.sum()
|
| 485 |
-
|
| 486 |
-
# 过滤小区域
|
| 487 |
-
if mask_area < MIN_MASK_AREA:
|
| 488 |
-
continue
|
| 489 |
-
|
| 490 |
-
# 计算边界框
|
| 491 |
-
rows, cols = np.where(instance_mask)
|
| 492 |
-
if len(rows) == 0:
|
| 493 |
-
continue
|
| 494 |
-
|
| 495 |
-
y_min, y_max = rows.min(), rows.max()
|
| 496 |
-
x_min, x_max = cols.min(), cols.max()
|
| 497 |
-
bbox = [x_min, y_min, x_max, y_max]
|
| 498 |
-
|
| 499 |
-
# 获取类别名称
|
| 500 |
-
label_name = ade20k_labels.get(int(label_id), f"object_{label_id}")
|
| 501 |
-
|
| 502 |
-
detections.append({
|
| 503 |
-
'bbox': bbox,
|
| 504 |
-
'label': label_name,
|
| 505 |
-
'confidence': 0.9, # SegFormer 不提供置信度,给固定值
|
| 506 |
-
'class_id': int(label_id)
|
| 507 |
-
})
|
| 508 |
-
masks.append(instance_mask)
|
| 509 |
-
|
| 510 |
-
return detections, masks
|
| 511 |
-
|
| 512 |
-
except Exception as e:
|
| 513 |
-
print(f"❌ SegFormer segmentation failed: {e}")
|
| 514 |
-
import traceback
|
| 515 |
-
traceback.print_exc()
|
| 516 |
-
return [], []
|
| 517 |
|
| 518 |
|
| 519 |
-
|
| 520 |
-
|
| 521 |
-
|
| 522 |
-
print("⚠️ GroundingDINO not loaded")
|
| 523 |
-
return []
|
| 524 |
-
|
| 525 |
-
try:
|
| 526 |
-
print(f"🔍 GroundingDINO detection (CPU): {text_prompt}")
|
| 527 |
-
|
| 528 |
-
# Convert to PIL Image
|
| 529 |
-
if image_np.dtype == np.uint8:
|
| 530 |
-
pil_image = Image.fromarray(image_np)
|
| 531 |
-
else:
|
| 532 |
-
pil_image = Image.fromarray((image_np * 255).astype(np.uint8))
|
| 533 |
-
|
| 534 |
-
# Preprocess - 强制使用CPU
|
| 535 |
-
seg_device = "cpu"
|
| 536 |
-
inputs = grounding_dino_processor(images=pil_image, text=text_prompt, return_tensors="pt")
|
| 537 |
-
inputs = {k: v.to(seg_device) for k, v in inputs.items() if isinstance(v, torch.Tensor)}
|
| 538 |
-
|
| 539 |
-
# Inference
|
| 540 |
-
with torch.no_grad():
|
| 541 |
-
outputs = grounding_dino_model(**inputs)
|
| 542 |
-
|
| 543 |
-
# Post-process
|
| 544 |
-
results = grounding_dino_processor.post_process_grounded_object_detection(
|
| 545 |
-
outputs,
|
| 546 |
-
inputs["input_ids"],
|
| 547 |
-
threshold=GROUNDING_DINO_BOX_THRESHOLD,
|
| 548 |
-
text_threshold=GROUNDING_DINO_TEXT_THRESHOLD,
|
| 549 |
-
target_sizes=[pil_image.size[::-1]]
|
| 550 |
-
)[0]
|
| 551 |
-
|
| 552 |
-
# Convert to unified format
|
| 553 |
-
detections = []
|
| 554 |
-
boxes = results["boxes"].cpu().numpy()
|
| 555 |
-
scores = results["scores"].cpu().numpy()
|
| 556 |
-
labels = results["labels"]
|
| 557 |
-
|
| 558 |
-
print(f"✅ Detected {len(boxes)} objects")
|
| 559 |
-
|
| 560 |
-
for box, score, label in zip(boxes, scores, labels):
|
| 561 |
-
detection = {
|
| 562 |
-
'bbox': box.tolist(), # [x1, y1, x2, y2]
|
| 563 |
-
'label': label,
|
| 564 |
-
'confidence': float(score)
|
| 565 |
-
}
|
| 566 |
-
detections.append(detection)
|
| 567 |
-
print(f" - {label}: {score:.2f}")
|
| 568 |
-
|
| 569 |
-
return detections
|
| 570 |
-
|
| 571 |
-
except Exception as e:
|
| 572 |
-
print(f"❌ GroundingDINO detection failed: {e}")
|
| 573 |
-
import traceback
|
| 574 |
-
traceback.print_exc()
|
| 575 |
-
return []
|
| 576 |
-
|
| 577 |
-
|
| 578 |
-
def run_sam_refinement(image_np, boxes):
|
| 579 |
-
"""Run SAM precise segmentation"""
|
| 580 |
-
if sam_predictor is None:
|
| 581 |
-
print("⚠️ SAM not loaded, using bbox as mask")
|
| 582 |
-
# Use bbox to create simple rectangular mask
|
| 583 |
-
masks = []
|
| 584 |
-
h, w = image_np.shape[:2]
|
| 585 |
-
for box in boxes:
|
| 586 |
-
x1, y1, x2, y2 = map(int, box)
|
| 587 |
-
mask = np.zeros((h, w), dtype=bool)
|
| 588 |
-
mask[y1:y2, x1:x2] = True
|
| 589 |
-
masks.append(mask)
|
| 590 |
-
return masks
|
| 591 |
-
|
| 592 |
-
try:
|
| 593 |
-
print(f"🎯 SAM precise segmentation for {len(boxes)} regions...")
|
| 594 |
-
sam_predictor.set_image(image_np)
|
| 595 |
-
|
| 596 |
-
masks = []
|
| 597 |
-
for box in boxes:
|
| 598 |
-
x1, y1, x2, y2 = map(int, box)
|
| 599 |
-
box_array = np.array([x1, y1, x2, y2])
|
| 600 |
-
|
| 601 |
-
mask_output, _, _ = sam_predictor.predict(
|
| 602 |
-
box=box_array,
|
| 603 |
-
multimask_output=False
|
| 604 |
-
)
|
| 605 |
-
masks.append(mask_output[0])
|
| 606 |
-
|
| 607 |
-
print(f"✅ SAM segmentation complete")
|
| 608 |
-
return masks
|
| 609 |
-
|
| 610 |
-
except Exception as e:
|
| 611 |
-
print(f"❌ SAM segmentation failed: {e}")
|
| 612 |
-
# Fallback to bbox masks
|
| 613 |
-
masks = []
|
| 614 |
-
h, w = image_np.shape[:2]
|
| 615 |
-
for box in boxes:
|
| 616 |
-
x1, y1, x2, y2 = map(int, box)
|
| 617 |
-
mask = np.zeros((h, w), dtype=bool)
|
| 618 |
-
mask[y1:y2, x1:x2] = True
|
| 619 |
-
masks.append(mask)
|
| 620 |
-
return masks
|
| 621 |
-
|
| 622 |
-
|
| 623 |
-
def normalize_label(label):
|
| 624 |
-
"""Normalize label to main category"""
|
| 625 |
-
label = label.strip().lower()
|
| 626 |
-
|
| 627 |
-
priority_labels = ['sofa', 'bed', 'table', 'desk', 'chair', 'cabinet', 'window', 'door']
|
| 628 |
-
|
| 629 |
-
for priority in priority_labels:
|
| 630 |
-
if priority in label:
|
| 631 |
-
return priority
|
| 632 |
-
|
| 633 |
-
first_word = label.split()[0] if label else label
|
| 634 |
-
|
| 635 |
-
# Handle plural forms
|
| 636 |
-
if first_word.endswith('s') and len(first_word) > 1:
|
| 637 |
-
singular = first_word[:-1]
|
| 638 |
-
if first_word.endswith('sses'):
|
| 639 |
-
singular = first_word[:-2]
|
| 640 |
-
elif first_word.endswith('ies'):
|
| 641 |
-
singular = first_word[:-3] + 'y'
|
| 642 |
-
elif first_word.endswith('ves'):
|
| 643 |
-
singular = first_word[:-3] + 'f'
|
| 644 |
-
return singular
|
| 645 |
-
|
| 646 |
-
return first_word
|
| 647 |
-
|
| 648 |
-
|
| 649 |
-
def compute_object_3d_center(points, mask):
|
| 650 |
-
"""Compute 3D center of object"""
|
| 651 |
-
masked_points = points[mask]
|
| 652 |
-
if len(masked_points) == 0:
|
| 653 |
-
return None
|
| 654 |
-
return np.median(masked_points, axis=0)
|
| 655 |
-
|
| 656 |
-
|
| 657 |
-
def compute_adaptive_eps(centers, base_eps):
|
| 658 |
-
"""Adaptively compute eps value based on object distribution"""
|
| 659 |
-
if len(centers) <= 1:
|
| 660 |
-
return base_eps
|
| 661 |
-
|
| 662 |
-
from scipy.spatial.distance import pdist
|
| 663 |
-
distances = pdist(centers)
|
| 664 |
-
|
| 665 |
-
if len(distances) == 0:
|
| 666 |
-
return base_eps
|
| 667 |
-
|
| 668 |
-
median_dist = np.median(distances)
|
| 669 |
-
|
| 670 |
-
if median_dist > base_eps * 2:
|
| 671 |
-
adaptive_eps = min(median_dist * 0.6, base_eps * 2.5)
|
| 672 |
-
elif median_dist > base_eps:
|
| 673 |
-
adaptive_eps = median_dist * 0.5
|
| 674 |
-
else:
|
| 675 |
-
adaptive_eps = base_eps
|
| 676 |
-
|
| 677 |
-
return adaptive_eps
|
| 678 |
-
|
| 679 |
-
|
| 680 |
-
def match_objects_across_views(all_view_detections):
|
| 681 |
-
"""Match objects across views using DBSCAN clustering"""
|
| 682 |
-
print("\n🔗 Matching objects across views using DBSCAN clustering...")
|
| 683 |
-
|
| 684 |
-
objects_by_label = defaultdict(list)
|
| 685 |
-
|
| 686 |
-
for view_idx, detections in enumerate(all_view_detections):
|
| 687 |
-
for det_idx, det in enumerate(detections):
|
| 688 |
-
if det.get('center_3d') is None:
|
| 689 |
-
continue
|
| 690 |
-
|
| 691 |
-
norm_label = normalize_label(det['label'])
|
| 692 |
-
objects_by_label[norm_label].append({
|
| 693 |
-
'view_idx': view_idx,
|
| 694 |
-
'det_idx': det_idx,
|
| 695 |
-
'label': det['label'],
|
| 696 |
-
'norm_label': norm_label,
|
| 697 |
-
'center_3d': det['center_3d'],
|
| 698 |
-
'confidence': det['confidence'],
|
| 699 |
-
})
|
| 700 |
-
|
| 701 |
-
if len(objects_by_label) == 0:
|
| 702 |
-
return {}, []
|
| 703 |
-
|
| 704 |
-
object_id_map = defaultdict(dict)
|
| 705 |
-
unique_objects = []
|
| 706 |
-
next_global_id = 0
|
| 707 |
-
|
| 708 |
-
for norm_label, objects in objects_by_label.items():
|
| 709 |
-
print(f"\n 📦 Processing {norm_label}: {len(objects)} detections")
|
| 710 |
-
|
| 711 |
-
if len(objects) == 1:
|
| 712 |
-
obj = objects[0]
|
| 713 |
-
unique_objects.append({
|
| 714 |
-
'global_id': next_global_id,
|
| 715 |
-
'label': obj['label'],
|
| 716 |
-
'views': [(obj['view_idx'], obj['det_idx'])],
|
| 717 |
-
'center_3d': obj['center_3d'],
|
| 718 |
-
})
|
| 719 |
-
object_id_map[obj['view_idx']][obj['det_idx']] = next_global_id
|
| 720 |
-
next_global_id += 1
|
| 721 |
-
print(f" → 1 cluster (single detection)")
|
| 722 |
-
continue
|
| 723 |
-
|
| 724 |
-
centers = np.array([obj['center_3d'] for obj in objects])
|
| 725 |
-
|
| 726 |
-
base_eps = DBSCAN_EPS_CONFIG.get(norm_label, DBSCAN_EPS_CONFIG.get('default', 1.0))
|
| 727 |
-
eps = compute_adaptive_eps(centers, base_eps)
|
| 728 |
-
|
| 729 |
-
clustering = DBSCAN(eps=eps, min_samples=DBSCAN_MIN_SAMPLES, metric='euclidean')
|
| 730 |
-
cluster_labels = clustering.fit_predict(centers)
|
| 731 |
-
|
| 732 |
-
n_clusters = len(set(cluster_labels)) - (1 if -1 in cluster_labels else 0)
|
| 733 |
-
n_noise = list(cluster_labels).count(-1)
|
| 734 |
-
|
| 735 |
-
if eps != base_eps:
|
| 736 |
-
print(f" → {n_clusters} clusters (base_eps={base_eps}m → adaptive_eps={eps:.2f}m)")
|
| 737 |
-
else:
|
| 738 |
-
print(f" → {n_clusters} clusters (eps={eps}m)")
|
| 739 |
-
if n_noise > 0:
|
| 740 |
-
print(f" ⚠️ {n_noise} noise points (isolated detections)")
|
| 741 |
-
|
| 742 |
-
for cluster_id in set(cluster_labels):
|
| 743 |
-
if cluster_id == -1:
|
| 744 |
-
for i, label in enumerate(cluster_labels):
|
| 745 |
-
if label == -1:
|
| 746 |
-
obj = objects[i]
|
| 747 |
-
unique_objects.append({
|
| 748 |
-
'global_id': next_global_id,
|
| 749 |
-
'label': obj['label'],
|
| 750 |
-
'views': [(obj['view_idx'], obj['det_idx'])],
|
| 751 |
-
'center_3d': obj['center_3d'],
|
| 752 |
-
})
|
| 753 |
-
object_id_map[obj['view_idx']][obj['det_idx']] = next_global_id
|
| 754 |
-
next_global_id += 1
|
| 755 |
-
else:
|
| 756 |
-
cluster_objects = [objects[i] for i, label in enumerate(cluster_labels) if label == cluster_id]
|
| 757 |
-
|
| 758 |
-
total_conf = sum(o['confidence'] for o in cluster_objects)
|
| 759 |
-
weighted_center = sum(o['center_3d'] * o['confidence'] for o in cluster_objects) / total_conf
|
| 760 |
-
|
| 761 |
-
unique_objects.append({
|
| 762 |
-
'global_id': next_global_id,
|
| 763 |
-
'label': cluster_objects[0]['label'],
|
| 764 |
-
'views': [(o['view_idx'], o['det_idx']) for o in cluster_objects],
|
| 765 |
-
'center_3d': weighted_center,
|
| 766 |
-
})
|
| 767 |
-
|
| 768 |
-
for obj in cluster_objects:
|
| 769 |
-
object_id_map[obj['view_idx']][obj['det_idx']] = next_global_id
|
| 770 |
-
|
| 771 |
-
next_global_id += 1
|
| 772 |
-
|
| 773 |
-
print(f"\n 📊 Summary:")
|
| 774 |
-
print(f" Total detections: {sum(len(objs) for objs in objects_by_label.values())}")
|
| 775 |
-
print(f" Unique objects: {len(unique_objects)}")
|
| 776 |
-
|
| 777 |
-
return object_id_map, unique_objects
|
| 778 |
-
|
| 779 |
-
|
| 780 |
-
def create_multi_view_segmented_mesh(processed_data, all_view_detections, all_view_masks,
|
| 781 |
-
object_id_map, unique_objects, target_dir):
|
| 782 |
-
"""Create multi-view fused segmented mesh"""
|
| 783 |
-
try:
|
| 784 |
-
print("\n🎨 Generating multi-view segmented mesh...")
|
| 785 |
-
|
| 786 |
-
unique_normalized_labels = sorted(set(normalize_label(obj['label']) for obj in unique_objects))
|
| 787 |
-
label_colors = {}
|
| 788 |
-
colors = generate_distinct_colors(len(unique_normalized_labels))
|
| 789 |
-
|
| 790 |
-
for i, norm_label in enumerate(unique_normalized_labels):
|
| 791 |
-
label_colors[norm_label] = colors[i]
|
| 792 |
-
|
| 793 |
-
for obj in unique_objects:
|
| 794 |
-
norm_label = normalize_label(obj['label'])
|
| 795 |
-
obj['color'] = label_colors[norm_label]
|
| 796 |
-
obj['normalized_label'] = norm_label
|
| 797 |
-
|
| 798 |
-
print(f" Object category color mapping:")
|
| 799 |
-
for norm_label, color in sorted(label_colors.items()):
|
| 800 |
-
count = sum(1 for obj in unique_objects if normalize_label(obj['label']) == norm_label)
|
| 801 |
-
print(f" {norm_label} × {count} → RGB{color}")
|
| 802 |
-
|
| 803 |
-
import utils3d
|
| 804 |
-
|
| 805 |
-
all_meshes = []
|
| 806 |
-
|
| 807 |
-
for view_idx in range(len(processed_data)):
|
| 808 |
-
view_data = processed_data[view_idx]
|
| 809 |
-
image = view_data["image"]
|
| 810 |
-
points3d = view_data["points3d"]
|
| 811 |
-
mask = view_data.get("mask")
|
| 812 |
-
normal = view_data.get("normal")
|
| 813 |
-
|
| 814 |
-
detections = all_view_detections[view_idx]
|
| 815 |
-
masks = all_view_masks[view_idx]
|
| 816 |
-
|
| 817 |
-
if len(detections) == 0:
|
| 818 |
-
continue
|
| 819 |
-
|
| 820 |
-
if image.dtype != np.uint8:
|
| 821 |
-
if image.max() <= 1.0:
|
| 822 |
-
image = (image * 255).astype(np.uint8)
|
| 823 |
-
else:
|
| 824 |
-
image = image.astype(np.uint8)
|
| 825 |
-
|
| 826 |
-
colored_image = image.copy()
|
| 827 |
-
confidence_map = np.zeros((image.shape[0], image.shape[1]), dtype=np.float32)
|
| 828 |
-
|
| 829 |
-
detections_info = []
|
| 830 |
-
filtered_count = 0
|
| 831 |
-
for det_idx, (det, seg_mask) in enumerate(zip(detections, masks)):
|
| 832 |
-
if det['confidence'] < MIN_DETECTION_CONFIDENCE:
|
| 833 |
-
filtered_count += 1
|
| 834 |
-
continue
|
| 835 |
-
|
| 836 |
-
mask_area = seg_mask.sum()
|
| 837 |
-
if mask_area < MIN_MASK_AREA:
|
| 838 |
-
filtered_count += 1
|
| 839 |
-
continue
|
| 840 |
-
|
| 841 |
-
global_id = object_id_map[view_idx].get(det_idx)
|
| 842 |
-
if global_id is None:
|
| 843 |
-
continue
|
| 844 |
-
|
| 845 |
-
unique_obj = next((obj for obj in unique_objects if obj['global_id'] == global_id), None)
|
| 846 |
-
if unique_obj is None:
|
| 847 |
-
continue
|
| 848 |
-
|
| 849 |
-
detections_info.append({
|
| 850 |
-
'mask': seg_mask,
|
| 851 |
-
'color': unique_obj['color'],
|
| 852 |
-
'confidence': det['confidence'],
|
| 853 |
-
})
|
| 854 |
-
|
| 855 |
-
if filtered_count > 0:
|
| 856 |
-
print(f" View {view_idx + 1}: filtered {filtered_count} low-quality detections")
|
| 857 |
-
|
| 858 |
-
detections_info.sort(key=lambda x: x['confidence'])
|
| 859 |
-
|
| 860 |
-
for info in detections_info:
|
| 861 |
-
seg_mask = info['mask']
|
| 862 |
-
color = info['color']
|
| 863 |
-
conf = info['confidence']
|
| 864 |
-
|
| 865 |
-
update_mask = seg_mask & (conf > confidence_map)
|
| 866 |
-
colored_image[update_mask] = color
|
| 867 |
-
confidence_map[update_mask] = conf
|
| 868 |
-
|
| 869 |
-
height, width = image.shape[:2]
|
| 870 |
-
|
| 871 |
-
if normal is None:
|
| 872 |
-
faces, vertices, vertex_colors, vertex_uvs = utils3d.numpy.image_mesh(
|
| 873 |
-
points3d,
|
| 874 |
-
colored_image.astype(np.float32) / 255,
|
| 875 |
-
utils3d.numpy.image_uv(width=width, height=height),
|
| 876 |
-
mask=mask if mask is not None else np.ones((height, width), dtype=bool),
|
| 877 |
-
tri=True
|
| 878 |
-
)
|
| 879 |
-
vertex_normals = None
|
| 880 |
-
else:
|
| 881 |
-
faces, vertices, vertex_colors, vertex_uvs, vertex_normals = utils3d.numpy.image_mesh(
|
| 882 |
-
points3d,
|
| 883 |
-
colored_image.astype(np.float32) / 255,
|
| 884 |
-
utils3d.numpy.image_uv(width=width, height=height),
|
| 885 |
-
normal,
|
| 886 |
-
mask=mask if mask is not None else np.ones((height, width), dtype=bool),
|
| 887 |
-
tri=True
|
| 888 |
-
)
|
| 889 |
-
|
| 890 |
-
vertices = vertices * np.array([1, -1, -1], dtype=np.float32)
|
| 891 |
-
if vertex_normals is not None:
|
| 892 |
-
vertex_normals = vertex_normals * np.array([1, -1, -1], dtype=np.float32)
|
| 893 |
-
|
| 894 |
-
view_mesh = trimesh.Trimesh(
|
| 895 |
-
vertices=vertices,
|
| 896 |
-
faces=faces,
|
| 897 |
-
vertex_normals=vertex_normals,
|
| 898 |
-
vertex_colors=(vertex_colors * 255).astype(np.uint8),
|
| 899 |
-
process=False
|
| 900 |
-
)
|
| 901 |
-
|
| 902 |
-
all_meshes.append(view_mesh)
|
| 903 |
-
print(f" View {view_idx + 1}: {len(vertices):,} vertices, {len(faces):,} faces")
|
| 904 |
-
|
| 905 |
-
if len(all_meshes) == 0:
|
| 906 |
-
print("⚠️ No mesh generated")
|
| 907 |
-
return None
|
| 908 |
-
|
| 909 |
-
print(" Fusing all views...")
|
| 910 |
-
combined_mesh = trimesh.util.concatenate(all_meshes)
|
| 911 |
-
|
| 912 |
-
glb_path = os.path.join(target_dir, 'segmented_mesh.glb')
|
| 913 |
-
combined_mesh.export(glb_path)
|
| 914 |
-
|
| 915 |
-
print(f"✅ Multi-view segmented mesh saved: {glb_path}")
|
| 916 |
-
print(f" Total: {len(combined_mesh.vertices):,} vertices, {len(combined_mesh.faces):,} faces")
|
| 917 |
-
print(f" {len(unique_objects)} unique objects")
|
| 918 |
-
|
| 919 |
-
return glb_path
|
| 920 |
-
|
| 921 |
-
except Exception as e:
|
| 922 |
-
print(f"❌ Failed to generate multi-view mesh: {e}")
|
| 923 |
-
import traceback
|
| 924 |
-
traceback.print_exc()
|
| 925 |
-
return None
|
| 926 |
-
|
| 927 |
-
|
| 928 |
-
# ============================================================================
|
| 929 |
-
# Core Model Inference
|
| 930 |
-
# ============================================================================
|
| 931 |
-
|
| 932 |
@spaces.GPU(duration=120)
|
| 933 |
def run_model(
|
| 934 |
target_dir,
|
|
@@ -936,24 +94,24 @@ def run_model(
|
|
| 936 |
mask_edges=True,
|
| 937 |
filter_black_bg=False,
|
| 938 |
filter_white_bg=False,
|
| 939 |
-
enable_segmentation=False,
|
| 940 |
-
text_prompt=DEFAULT_TEXT_PROMPT,
|
| 941 |
progress=gr.Progress(),
|
| 942 |
):
|
| 943 |
"""
|
| 944 |
-
Run the MapAnything model
|
| 945 |
"""
|
| 946 |
global model
|
| 947 |
-
import torch
|
| 948 |
|
| 949 |
-
|
| 950 |
print(f"Processing images from {target_dir}")
|
| 951 |
|
|
|
|
|
|
|
| 952 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 953 |
device = torch.device(device)
|
| 954 |
|
| 955 |
-
# Initialize
|
| 956 |
-
progress(0.05, desc="📥
|
| 957 |
if model is None:
|
| 958 |
model = initialize_mapanything_model(high_level_config, device)
|
| 959 |
else:
|
|
@@ -961,46 +119,8 @@ def run_model(
|
|
| 961 |
|
| 962 |
model.eval()
|
| 963 |
|
| 964 |
-
# Load
|
| 965 |
-
|
| 966 |
-
progress(0.1, desc="🎯 加载分割模型 (CPU)...")
|
| 967 |
-
print(f"\n{'='*70}")
|
| 968 |
-
print(f"🎯 分割模型加载开始... (方案: {SEGMENTATION_METHOD})")
|
| 969 |
-
print(f"{'='*70}")
|
| 970 |
-
|
| 971 |
-
if SEGMENTATION_METHOD == "segformer":
|
| 972 |
-
# 方案1: SegFormer (最轻量,~14MB,最快)
|
| 973 |
-
print("📌 使用方案: SegFormer (轻量级,无需文本提示)")
|
| 974 |
-
load_segformer_model("cpu")
|
| 975 |
-
if segformer_model is None:
|
| 976 |
-
print("❌ SegFormer 模型加载失败!")
|
| 977 |
-
raise RuntimeError("SegFormer 模型加载失败,请检查网络连接")
|
| 978 |
-
|
| 979 |
-
elif SEGMENTATION_METHOD == "maskformer":
|
| 980 |
-
# 方案2: MaskFormer (中等,~100MB)
|
| 981 |
-
print("📌 使用方案: MaskFormer (实例分割)")
|
| 982 |
-
load_maskformer_model("cpu")
|
| 983 |
-
if maskformer_model is None:
|
| 984 |
-
print("❌ MaskFormer 模型加载失败!")
|
| 985 |
-
raise RuntimeError("MaskFormer 模型加载失败,请检查网络连接")
|
| 986 |
-
|
| 987 |
-
else: # "grounding_sam"
|
| 988 |
-
# 方案3: GroundingDINO + SAM (最强,~110MB,需要文本提示)
|
| 989 |
-
print("📌 使用方案: GroundingDINO + SAM (文本提示驱动)")
|
| 990 |
-
load_grounding_dino_model("cpu")
|
| 991 |
-
load_sam_model("cpu")
|
| 992 |
-
if grounding_dino_model is None:
|
| 993 |
-
print("❌ GroundingDINO 模型加载失败!")
|
| 994 |
-
raise RuntimeError("GroundingDINO 模型加载失败,请检查网络连接")
|
| 995 |
-
if sam_predictor is None:
|
| 996 |
-
print("❌ SAM 模型加载失败!")
|
| 997 |
-
raise RuntimeError("SAM 模型加载失败,请检查网络连接")
|
| 998 |
-
|
| 999 |
-
print(f"✅ 分割模型加载成功")
|
| 1000 |
-
print(f"{'='*70}\n")
|
| 1001 |
-
|
| 1002 |
-
# Load images
|
| 1003 |
-
progress(0.15, desc="📷 加载图片...")
|
| 1004 |
print("Loading images...")
|
| 1005 |
image_folder_path = os.path.join(target_dir, "images")
|
| 1006 |
views = load_images(image_folder_path)
|
|
@@ -1010,15 +130,22 @@ def run_model(
|
|
| 1010 |
raise ValueError("No images found. Check your upload.")
|
| 1011 |
|
| 1012 |
# Run model inference
|
| 1013 |
-
|
|
|
|
|
|
|
| 1014 |
print("Running inference...")
|
|
|
|
|
|
|
| 1015 |
outputs = model.infer(
|
| 1016 |
views, apply_mask=apply_mask, mask_edges=True, memory_efficient_inference=False
|
| 1017 |
)
|
|
|
|
| 1018 |
|
| 1019 |
-
# Convert predictions
|
| 1020 |
-
progress(0.
|
| 1021 |
predictions = {}
|
|
|
|
|
|
|
| 1022 |
extrinsic_list = []
|
| 1023 |
intrinsic_list = []
|
| 1024 |
world_points_list = []
|
|
@@ -1026,158 +153,81 @@ def run_model(
|
|
| 1026 |
images_list = []
|
| 1027 |
final_mask_list = []
|
| 1028 |
|
| 1029 |
-
|
| 1030 |
-
|
| 1031 |
-
|
| 1032 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1033 |
|
|
|
|
| 1034 |
pts3d_computed, valid_mask = depthmap_to_world_frame(
|
| 1035 |
depthmap_torch, intrinsics_torch, camera_pose_torch
|
| 1036 |
)
|
| 1037 |
|
|
|
|
|
|
|
| 1038 |
if "mask" in pred:
|
| 1039 |
mask = pred["mask"][0].squeeze(-1).cpu().numpy().astype(bool)
|
| 1040 |
else:
|
|
|
|
| 1041 |
mask = np.ones_like(depthmap_torch.cpu().numpy(), dtype=bool)
|
| 1042 |
|
|
|
|
| 1043 |
mask = mask & valid_mask.cpu().numpy()
|
|
|
|
| 1044 |
image = pred["img_no_norm"][0].cpu().numpy()
|
| 1045 |
|
|
|
|
| 1046 |
extrinsic_list.append(camera_pose_torch.cpu().numpy())
|
| 1047 |
intrinsic_list.append(intrinsics_torch.cpu().numpy())
|
| 1048 |
world_points_list.append(pts3d_computed.cpu().numpy())
|
| 1049 |
depth_maps_list.append(depthmap_torch.cpu().numpy())
|
| 1050 |
-
images_list.append(image)
|
| 1051 |
-
final_mask_list.append(mask)
|
| 1052 |
|
|
|
|
|
|
|
| 1053 |
predictions["extrinsic"] = np.stack(extrinsic_list, axis=0)
|
|
|
|
|
|
|
| 1054 |
predictions["intrinsic"] = np.stack(intrinsic_list, axis=0)
|
|
|
|
|
|
|
| 1055 |
predictions["world_points"] = np.stack(world_points_list, axis=0)
|
| 1056 |
|
|
|
|
| 1057 |
depth_maps = np.stack(depth_maps_list, axis=0)
|
|
|
|
| 1058 |
if len(depth_maps.shape) == 3:
|
| 1059 |
depth_maps = depth_maps[..., np.newaxis]
|
|
|
|
| 1060 |
predictions["depth"] = depth_maps
|
| 1061 |
|
|
|
|
| 1062 |
predictions["images"] = np.stack(images_list, axis=0)
|
|
|
|
|
|
|
| 1063 |
predictions["final_mask"] = np.stack(final_mask_list, axis=0)
|
| 1064 |
|
| 1065 |
-
# Process visualization
|
| 1066 |
-
progress(0.
|
| 1067 |
processed_data = process_predictions_for_visualization(
|
| 1068 |
predictions, views, high_level_config, filter_black_bg, filter_white_bg
|
| 1069 |
)
|
| 1070 |
|
| 1071 |
-
#
|
| 1072 |
-
segmented_glb = None
|
| 1073 |
-
if enable_segmentation:
|
| 1074 |
-
progress(0.65, desc="🎯 开始物体分割...")
|
| 1075 |
-
print(f"\n{'='*70}")
|
| 1076 |
-
print(f"🎯 开始物体分割... (方案: {SEGMENTATION_METHOD})")
|
| 1077 |
-
print(f"📐 最小掩码面积: {MIN_MASK_AREA} px")
|
| 1078 |
-
if SEGMENTATION_METHOD == "grounding_sam":
|
| 1079 |
-
print(f"🔍 检测提示词: {text_prompt[:100]}...")
|
| 1080 |
-
print(f"📊 置信度阈值: {GROUNDING_DINO_BOX_THRESHOLD}")
|
| 1081 |
-
print(f"{'='*70}\n")
|
| 1082 |
-
|
| 1083 |
-
all_view_detections = []
|
| 1084 |
-
all_view_masks = []
|
| 1085 |
-
|
| 1086 |
-
for view_idx, ref_image in enumerate(images_list):
|
| 1087 |
-
progress(0.65 + (view_idx / len(images_list)) * 0.2,
|
| 1088 |
-
desc=f"🔍 检测视图 {view_idx + 1}/{len(images_list)}...")
|
| 1089 |
-
print(f"\n📸 Processing view {view_idx + 1}/{len(images_list)}...")
|
| 1090 |
-
|
| 1091 |
-
if ref_image.dtype != np.uint8:
|
| 1092 |
-
ref_image_np = (ref_image * 255).astype(np.uint8)
|
| 1093 |
-
else:
|
| 1094 |
-
ref_image_np = ref_image
|
| 1095 |
-
|
| 1096 |
-
# 根据分割方法选择不同的处理流程
|
| 1097 |
-
if SEGMENTATION_METHOD == "segformer":
|
| 1098 |
-
# SegFormer: 直接语义分割,无需文本提示
|
| 1099 |
-
detections, masks = run_segformer_segmentation(ref_image_np, "cpu")
|
| 1100 |
-
print(f" ✓ 检测到 {len(detections)} 个物体")
|
| 1101 |
-
|
| 1102 |
-
if len(detections) > 0:
|
| 1103 |
-
for i, det in enumerate(detections):
|
| 1104 |
-
print(f" 物体 {i+1}: {det['label']}")
|
| 1105 |
-
|
| 1106 |
-
points3d = world_points_list[view_idx]
|
| 1107 |
-
for det_idx, (det, mask) in enumerate(zip(detections, masks)):
|
| 1108 |
-
center_3d = compute_object_3d_center(points3d, mask)
|
| 1109 |
-
det['center_3d'] = center_3d
|
| 1110 |
-
det['mask_2d'] = mask
|
| 1111 |
-
|
| 1112 |
-
all_view_detections.append(detections)
|
| 1113 |
-
all_view_masks.append(masks)
|
| 1114 |
-
else:
|
| 1115 |
-
all_view_detections.append([])
|
| 1116 |
-
all_view_masks.append([])
|
| 1117 |
-
|
| 1118 |
-
elif SEGMENTATION_METHOD == "grounding_sam":
|
| 1119 |
-
# GroundingDINO + SAM: 文本提示驱动
|
| 1120 |
-
detections = run_grounding_dino_detection(ref_image_np, text_prompt, "cpu")
|
| 1121 |
-
print(f" ✓ 检测到 {len(detections)} 个物体")
|
| 1122 |
-
|
| 1123 |
-
if len(detections) > 0:
|
| 1124 |
-
for i, det in enumerate(detections):
|
| 1125 |
-
print(f" 物体 {i+1}: {det['label']} (置信度: {det['confidence']:.2f})")
|
| 1126 |
-
boxes = [d['bbox'] for d in detections]
|
| 1127 |
-
masks = run_sam_refinement(ref_image_np, boxes)
|
| 1128 |
-
|
| 1129 |
-
points3d = world_points_list[view_idx]
|
| 1130 |
-
for det_idx, (det, mask) in enumerate(zip(detections, masks)):
|
| 1131 |
-
center_3d = compute_object_3d_center(points3d, mask)
|
| 1132 |
-
det['center_3d'] = center_3d
|
| 1133 |
-
det['mask_2d'] = mask
|
| 1134 |
-
|
| 1135 |
-
all_view_detections.append(detections)
|
| 1136 |
-
all_view_masks.append(masks)
|
| 1137 |
-
else:
|
| 1138 |
-
all_view_detections.append([])
|
| 1139 |
-
all_view_masks.append([])
|
| 1140 |
-
|
| 1141 |
-
# Match objects across views
|
| 1142 |
-
total_detections = sum(len(dets) for dets in all_view_detections)
|
| 1143 |
-
print(f"\n📊 总检测数: {total_detections}")
|
| 1144 |
-
|
| 1145 |
-
if any(len(dets) > 0 for dets in all_view_detections):
|
| 1146 |
-
progress(0.85, desc="🔗 匹配跨视图物体...")
|
| 1147 |
-
object_id_map, unique_objects = match_objects_across_views(all_view_detections)
|
| 1148 |
-
|
| 1149 |
-
# Generate segmented mesh
|
| 1150 |
-
progress(0.9, desc="🏗️ 生成分割3D模型...")
|
| 1151 |
-
segmented_glb = create_multi_view_segmented_mesh(
|
| 1152 |
-
processed_data, all_view_detections, all_view_masks,
|
| 1153 |
-
object_id_map, unique_objects, target_dir
|
| 1154 |
-
)
|
| 1155 |
-
|
| 1156 |
-
if segmented_glb:
|
| 1157 |
-
print(f"✅ 分割3D模型已生成: {segmented_glb}")
|
| 1158 |
-
else:
|
| 1159 |
-
print(f"⚠️ 分割3D模型生成失败")
|
| 1160 |
-
else:
|
| 1161 |
-
print(f"\n{'='*70}")
|
| 1162 |
-
print(f"⚠️ 未检测到任何物体,无法生成分割模型")
|
| 1163 |
-
print(f"\n💡 调试提示:")
|
| 1164 |
-
print(f" 1. 检查检测提示词是否准确(当前: {text_prompt[:50]}...)")
|
| 1165 |
-
print(f" 2. 当前置信度阈值: {GROUNDING_DINO_BOX_THRESHOLD}")
|
| 1166 |
-
print(f" 3. 尝试更通用的提示词,如: {COMMON_OBJECTS_PROMPT[:80]}...")
|
| 1167 |
-
print(f" 4. 确保图片中有清晰可见的物体")
|
| 1168 |
-
print(f"{'='*70}\n")
|
| 1169 |
-
|
| 1170 |
-
# Cleanup
|
| 1171 |
progress(0.95, desc="🧹 清理内存...")
|
| 1172 |
torch.cuda.empty_cache()
|
| 1173 |
|
| 1174 |
-
|
| 1175 |
-
|
|
|
|
| 1176 |
|
|
|
|
| 1177 |
|
| 1178 |
-
# ============================================================================
|
| 1179 |
-
# Helper Functions (from app.py)
|
| 1180 |
-
# ============================================================================
|
| 1181 |
|
| 1182 |
def update_view_selectors(processed_data):
|
| 1183 |
"""Update view selector dropdowns based on available views"""
|
|
@@ -1188,9 +238,9 @@ def update_view_selectors(processed_data):
|
|
| 1188 |
choices = [f"View {i + 1}" for i in range(num_views)]
|
| 1189 |
|
| 1190 |
return (
|
| 1191 |
-
gr.Dropdown(choices=choices, value=choices[0]),
|
| 1192 |
-
gr.Dropdown(choices=choices, value=choices[0]),
|
| 1193 |
-
gr.Dropdown(choices=choices, value=choices[0]),
|
| 1194 |
)
|
| 1195 |
|
| 1196 |
|
|
@@ -1228,24 +278,33 @@ def update_measure_view(processed_data, view_index):
|
|
| 1228 |
"""Update measure view for a specific view index with mask overlay"""
|
| 1229 |
view_data = get_view_data_by_index(processed_data, view_index)
|
| 1230 |
if view_data is None:
|
| 1231 |
-
return None, []
|
| 1232 |
|
|
|
|
| 1233 |
image = view_data["image"].copy()
|
| 1234 |
|
|
|
|
| 1235 |
if image.dtype != np.uint8:
|
| 1236 |
if image.max() <= 1.0:
|
| 1237 |
image = (image * 255).astype(np.uint8)
|
| 1238 |
else:
|
| 1239 |
image = image.astype(np.uint8)
|
| 1240 |
|
|
|
|
| 1241 |
if view_data["mask"] is not None:
|
| 1242 |
mask = view_data["mask"]
|
| 1243 |
-
|
|
|
|
|
|
|
|
|
|
| 1244 |
|
| 1245 |
if invalid_mask.any():
|
|
|
|
| 1246 |
overlay_color = np.array([255, 220, 220], dtype=np.uint8)
|
| 1247 |
-
|
| 1248 |
-
|
|
|
|
|
|
|
| 1249 |
image[:, :, c] = np.where(
|
| 1250 |
invalid_mask,
|
| 1251 |
(1 - alpha) * image[:, :, c] + alpha * overlay_color[c],
|
|
@@ -1260,6 +319,7 @@ def navigate_depth_view(processed_data, current_selector_value, direction):
|
|
| 1260 |
if processed_data is None or len(processed_data) == 0:
|
| 1261 |
return "View 1", None
|
| 1262 |
|
|
|
|
| 1263 |
try:
|
| 1264 |
current_view = int(current_selector_value.split()[1]) - 1
|
| 1265 |
except:
|
|
@@ -1279,6 +339,7 @@ def navigate_normal_view(processed_data, current_selector_value, direction):
|
|
| 1279 |
if processed_data is None or len(processed_data) == 0:
|
| 1280 |
return "View 1", None
|
| 1281 |
|
|
|
|
| 1282 |
try:
|
| 1283 |
current_view = int(current_selector_value.split()[1]) - 1
|
| 1284 |
except:
|
|
@@ -1298,6 +359,7 @@ def navigate_measure_view(processed_data, current_selector_value, direction):
|
|
| 1298 |
if processed_data is None or len(processed_data) == 0:
|
| 1299 |
return "View 1", None, []
|
| 1300 |
|
|
|
|
| 1301 |
try:
|
| 1302 |
current_view = int(current_selector_value.split()[1]) - 1
|
| 1303 |
except:
|
|
@@ -1317,6 +379,7 @@ def populate_visualization_tabs(processed_data):
|
|
| 1317 |
if processed_data is None or len(processed_data) == 0:
|
| 1318 |
return None, None, None, []
|
| 1319 |
|
|
|
|
| 1320 |
depth_vis = update_depth_view(processed_data, 0)
|
| 1321 |
normal_vis = update_normal_view(processed_data, 0)
|
| 1322 |
measure_img, _ = update_measure_view(processed_data, 0)
|
|
@@ -1324,6 +387,9 @@ def populate_visualization_tabs(processed_data):
|
|
| 1324 |
return depth_vis, normal_vis, measure_img, []
|
| 1325 |
|
| 1326 |
|
|
|
|
|
|
|
|
|
|
| 1327 |
def handle_uploads(unified_upload, s_time_interval=1.0):
|
| 1328 |
"""
|
| 1329 |
Create a new 'target_dir' + 'images' subfolder, and place user-uploaded
|
|
@@ -1333,10 +399,12 @@ def handle_uploads(unified_upload, s_time_interval=1.0):
|
|
| 1333 |
gc.collect()
|
| 1334 |
torch.cuda.empty_cache()
|
| 1335 |
|
|
|
|
| 1336 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
|
| 1337 |
target_dir = f"input_images_{timestamp}"
|
| 1338 |
target_dir_images = os.path.join(target_dir, "images")
|
| 1339 |
|
|
|
|
| 1340 |
if os.path.exists(target_dir):
|
| 1341 |
shutil.rmtree(target_dir)
|
| 1342 |
os.makedirs(target_dir)
|
|
@@ -1344,6 +412,7 @@ def handle_uploads(unified_upload, s_time_interval=1.0):
|
|
| 1344 |
|
| 1345 |
image_paths = []
|
| 1346 |
|
|
|
|
| 1347 |
if unified_upload is not None:
|
| 1348 |
for file_data in unified_upload:
|
| 1349 |
if isinstance(file_data, dict) and "name" in file_data:
|
|
@@ -1353,13 +422,23 @@ def handle_uploads(unified_upload, s_time_interval=1.0):
|
|
| 1353 |
|
| 1354 |
file_ext = os.path.splitext(file_path)[1].lower()
|
| 1355 |
|
|
|
|
| 1356 |
video_extensions = [
|
| 1357 |
-
".mp4",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1358 |
]
|
| 1359 |
if file_ext in video_extensions:
|
|
|
|
| 1360 |
vs = cv2.VideoCapture(file_path)
|
| 1361 |
fps = vs.get(cv2.CAP_PROP_FPS)
|
| 1362 |
-
frame_interval = int(fps * s_time_interval)
|
| 1363 |
|
| 1364 |
count = 0
|
| 1365 |
video_frame_num = 0
|
|
@@ -1369,6 +448,7 @@ def handle_uploads(unified_upload, s_time_interval=1.0):
|
|
| 1369 |
break
|
| 1370 |
count += 1
|
| 1371 |
if count % frame_interval == 0:
|
|
|
|
| 1372 |
base_name = os.path.splitext(os.path.basename(file_path))[0]
|
| 1373 |
image_path = os.path.join(
|
| 1374 |
target_dir_images, f"{base_name}_{video_frame_num:06}.png"
|
|
@@ -1377,52 +457,82 @@ def handle_uploads(unified_upload, s_time_interval=1.0):
|
|
| 1377 |
image_paths.append(image_path)
|
| 1378 |
video_frame_num += 1
|
| 1379 |
vs.release()
|
| 1380 |
-
print(
|
|
|
|
|
|
|
| 1381 |
|
| 1382 |
else:
|
|
|
|
|
|
|
| 1383 |
if file_ext in [".heic", ".heif"]:
|
|
|
|
| 1384 |
try:
|
| 1385 |
with Image.open(file_path) as img:
|
|
|
|
| 1386 |
if img.mode not in ("RGB", "L"):
|
| 1387 |
img = img.convert("RGB")
|
| 1388 |
|
|
|
|
| 1389 |
base_name = os.path.splitext(os.path.basename(file_path))[0]
|
| 1390 |
-
dst_path = os.path.join(
|
|
|
|
|
|
|
| 1391 |
|
|
|
|
| 1392 |
img.save(dst_path, "JPEG", quality=95)
|
| 1393 |
image_paths.append(dst_path)
|
| 1394 |
-
print(
|
|
|
|
|
|
|
| 1395 |
except Exception as e:
|
| 1396 |
print(f"Error converting HEIC file {file_path}: {e}")
|
| 1397 |
-
|
|
|
|
|
|
|
|
|
|
| 1398 |
shutil.copy(file_path, dst_path)
|
| 1399 |
image_paths.append(dst_path)
|
| 1400 |
else:
|
| 1401 |
-
|
|
|
|
|
|
|
|
|
|
| 1402 |
shutil.copy(file_path, dst_path)
|
| 1403 |
image_paths.append(dst_path)
|
| 1404 |
|
|
|
|
| 1405 |
image_paths = sorted(image_paths)
|
| 1406 |
|
| 1407 |
end_time = time.time()
|
| 1408 |
-
print(
|
|
|
|
|
|
|
| 1409 |
return target_dir, image_paths
|
| 1410 |
|
| 1411 |
|
|
|
|
|
|
|
|
|
|
| 1412 |
def update_gallery_on_upload(input_video, input_images, s_time_interval=1.0):
|
| 1413 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1414 |
if not input_video and not input_images:
|
| 1415 |
-
return None, None, None, None
|
| 1416 |
target_dir, image_paths = handle_uploads(input_video, input_images, s_time_interval)
|
| 1417 |
return (
|
| 1418 |
-
None,
|
| 1419 |
None,
|
| 1420 |
target_dir,
|
| 1421 |
image_paths,
|
| 1422 |
-
"
|
| 1423 |
)
|
| 1424 |
|
| 1425 |
|
|
|
|
|
|
|
|
|
|
| 1426 |
@spaces.GPU(duration=120)
|
| 1427 |
def gradio_demo(
|
| 1428 |
target_dir,
|
|
@@ -1432,19 +542,20 @@ def gradio_demo(
|
|
| 1432 |
filter_white_bg=False,
|
| 1433 |
apply_mask=True,
|
| 1434 |
show_mesh=True,
|
| 1435 |
-
enable_segmentation=False,
|
| 1436 |
-
text_prompt=DEFAULT_TEXT_PROMPT,
|
| 1437 |
progress=gr.Progress(),
|
| 1438 |
):
|
| 1439 |
-
"""
|
|
|
|
|
|
|
| 1440 |
if not os.path.isdir(target_dir) or target_dir == "None":
|
| 1441 |
-
return None,
|
| 1442 |
|
| 1443 |
progress(0, desc="🔄 准备重建...")
|
| 1444 |
start_time = time.time()
|
| 1445 |
gc.collect()
|
| 1446 |
torch.cuda.empty_cache()
|
| 1447 |
|
|
|
|
| 1448 |
target_dir_images = os.path.join(target_dir, "images")
|
| 1449 |
all_files = (
|
| 1450 |
sorted(os.listdir(target_dir_images))
|
|
@@ -1454,94 +565,92 @@ def gradio_demo(
|
|
| 1454 |
all_files = [f"{i}: {filename}" for i, filename in enumerate(all_files)]
|
| 1455 |
frame_filter_choices = ["All"] + all_files
|
| 1456 |
|
| 1457 |
-
progress(0.05, desc="🚀 运行 MapAnything 模型...")
|
| 1458 |
-
print("
|
| 1459 |
with torch.no_grad():
|
| 1460 |
-
predictions, processed_data
|
| 1461 |
-
target_dir, apply_mask, True, filter_black_bg, filter_white_bg,
|
| 1462 |
-
enable_segmentation, text_prompt, progress
|
| 1463 |
)
|
| 1464 |
|
| 1465 |
-
#
|
| 1466 |
progress(0.92, desc="💾 保存预测结果...")
|
| 1467 |
prediction_save_path = os.path.join(target_dir, "predictions.npz")
|
| 1468 |
np.savez(prediction_save_path, **predictions)
|
| 1469 |
|
|
|
|
| 1470 |
if frame_filter is None:
|
| 1471 |
frame_filter = "All"
|
| 1472 |
|
| 1473 |
-
#
|
| 1474 |
-
progress(0.93, desc="🏗️
|
| 1475 |
glbfile = os.path.join(
|
| 1476 |
target_dir,
|
| 1477 |
-
f"glbscene_{frame_filter.replace('.', '_').replace(':', '').replace(' ', '_')}_cam{show_cam}_mesh{show_mesh}.glb",
|
| 1478 |
)
|
| 1479 |
|
| 1480 |
-
#
|
| 1481 |
glbscene = predictions_to_glb(
|
| 1482 |
predictions,
|
| 1483 |
filter_by_frames=frame_filter,
|
| 1484 |
show_cam=show_cam,
|
| 1485 |
mask_black_bg=filter_black_bg,
|
| 1486 |
mask_white_bg=filter_white_bg,
|
| 1487 |
-
as_mesh=show_mesh,
|
| 1488 |
)
|
| 1489 |
glbscene.export(file_obj=glbfile)
|
| 1490 |
|
| 1491 |
-
#
|
| 1492 |
progress(0.96, desc="🧹 清理内存...")
|
| 1493 |
del predictions
|
| 1494 |
gc.collect()
|
| 1495 |
torch.cuda.empty_cache()
|
| 1496 |
|
| 1497 |
end_time = time.time()
|
| 1498 |
-
|
| 1499 |
-
|
|
|
|
| 1500 |
|
| 1501 |
-
# Populate visualization tabs
|
| 1502 |
progress(0.98, desc="🎨 生成可视化...")
|
| 1503 |
depth_vis, normal_vis, measure_img, measure_pts = populate_visualization_tabs(
|
| 1504 |
processed_data
|
| 1505 |
)
|
| 1506 |
|
| 1507 |
-
# Update view selectors
|
| 1508 |
depth_selector, normal_selector, measure_selector = update_view_selectors(
|
| 1509 |
processed_data
|
| 1510 |
)
|
| 1511 |
|
| 1512 |
progress(1.0, desc="✅ 全部完成!")
|
| 1513 |
-
|
| 1514 |
-
# 添加分割状态信息
|
| 1515 |
-
if enable_segmentation:
|
| 1516 |
-
if segmented_glb:
|
| 1517 |
-
log_msg += f"\n🎨 分割模型已生成"
|
| 1518 |
-
else:
|
| 1519 |
-
log_msg += f"\n⚠️ 未检测到物体,无分割模型"
|
| 1520 |
|
| 1521 |
return (
|
| 1522 |
glbfile,
|
| 1523 |
-
segmented_glb,
|
| 1524 |
log_msg,
|
| 1525 |
gr.Dropdown(choices=frame_filter_choices, value=frame_filter, interactive=True),
|
| 1526 |
processed_data,
|
| 1527 |
depth_vis,
|
| 1528 |
normal_vis,
|
| 1529 |
measure_img,
|
| 1530 |
-
"",
|
| 1531 |
depth_selector,
|
| 1532 |
normal_selector,
|
| 1533 |
measure_selector,
|
| 1534 |
)
|
| 1535 |
|
| 1536 |
|
|
|
|
|
|
|
|
|
|
| 1537 |
def colorize_depth(depth_map, mask=None):
|
| 1538 |
"""Convert depth map to colorized visualization with optional mask"""
|
| 1539 |
if depth_map is None:
|
| 1540 |
return None
|
| 1541 |
|
|
|
|
| 1542 |
depth_normalized = depth_map.copy()
|
| 1543 |
valid_mask = depth_normalized > 0
|
| 1544 |
|
|
|
|
| 1545 |
if mask is not None:
|
| 1546 |
valid_mask = valid_mask & mask
|
| 1547 |
|
|
@@ -1552,12 +661,14 @@ def colorize_depth(depth_map, mask=None):
|
|
| 1552 |
|
| 1553 |
depth_normalized[valid_mask] = (depth_normalized[valid_mask] - p5) / (p95 - p5)
|
| 1554 |
|
|
|
|
| 1555 |
import matplotlib.pyplot as plt
|
| 1556 |
|
| 1557 |
colormap = plt.cm.turbo_r
|
| 1558 |
colored = colormap(depth_normalized)
|
| 1559 |
colored = (colored[:, :, :3] * 255).astype(np.uint8)
|
| 1560 |
|
|
|
|
| 1561 |
colored[~valid_mask] = [255, 255, 255]
|
| 1562 |
|
| 1563 |
return colored
|
|
@@ -1568,12 +679,15 @@ def colorize_normal(normal_map, mask=None):
|
|
| 1568 |
if normal_map is None:
|
| 1569 |
return None
|
| 1570 |
|
|
|
|
| 1571 |
normal_vis = normal_map.copy()
|
| 1572 |
|
|
|
|
| 1573 |
if mask is not None:
|
| 1574 |
invalid_mask = ~mask
|
| 1575 |
-
normal_vis[invalid_mask] = [0, 0, 0]
|
| 1576 |
|
|
|
|
| 1577 |
normal_vis = (normal_vis + 1.0) / 2.0
|
| 1578 |
normal_vis = (normal_vis * 255).astype(np.uint8)
|
| 1579 |
|
|
@@ -1586,11 +700,15 @@ def process_predictions_for_visualization(
|
|
| 1586 |
"""Extract depth, normal, and 3D points from predictions for visualization"""
|
| 1587 |
processed_data = {}
|
| 1588 |
|
|
|
|
| 1589 |
for view_idx, view in enumerate(views):
|
|
|
|
| 1590 |
image = rgb(view["img"], norm_type=high_level_config["data_norm_type"])
|
| 1591 |
|
|
|
|
| 1592 |
pred_pts3d = predictions["world_points"][view_idx]
|
| 1593 |
|
|
|
|
| 1594 |
view_data = {
|
| 1595 |
"image": image[0],
|
| 1596 |
"points3d": pred_pts3d,
|
|
@@ -1599,15 +717,22 @@ def process_predictions_for_visualization(
|
|
| 1599 |
"mask": None,
|
| 1600 |
}
|
| 1601 |
|
|
|
|
| 1602 |
mask = predictions["final_mask"][view_idx].copy()
|
| 1603 |
|
|
|
|
| 1604 |
if filter_black_bg:
|
|
|
|
| 1605 |
view_colors = image[0] * 255 if image[0].max() <= 1.0 else image[0]
|
|
|
|
| 1606 |
black_bg_mask = view_colors.sum(axis=2) >= 16
|
| 1607 |
mask = mask & black_bg_mask
|
| 1608 |
|
|
|
|
| 1609 |
if filter_white_bg:
|
|
|
|
| 1610 |
view_colors = image[0] * 255 if image[0].max() <= 1.0 else image[0]
|
|
|
|
| 1611 |
white_bg_mask = ~(
|
| 1612 |
(view_colors[:, :, 0] > 240)
|
| 1613 |
& (view_colors[:, :, 1] > 240)
|
|
@@ -1631,6 +756,7 @@ def reset_measure(processed_data):
|
|
| 1631 |
if processed_data is None or len(processed_data) == 0:
|
| 1632 |
return None, [], ""
|
| 1633 |
|
|
|
|
| 1634 |
first_view = list(processed_data.values())[0]
|
| 1635 |
return first_view["image"], [], ""
|
| 1636 |
|
|
@@ -1640,18 +766,20 @@ def measure(
|
|
| 1640 |
):
|
| 1641 |
"""Handle measurement on images"""
|
| 1642 |
try:
|
| 1643 |
-
print(f"
|
| 1644 |
|
| 1645 |
if processed_data is None or len(processed_data) == 0:
|
| 1646 |
-
return None, [], "
|
| 1647 |
|
|
|
|
| 1648 |
try:
|
| 1649 |
current_view_index = int(current_view_selector.split()[1]) - 1
|
| 1650 |
except:
|
| 1651 |
current_view_index = 0
|
| 1652 |
|
| 1653 |
-
print(f"
|
| 1654 |
|
|
|
|
| 1655 |
if current_view_index < 0 or current_view_index >= len(processed_data):
|
| 1656 |
current_view_index = 0
|
| 1657 |
|
|
@@ -1659,46 +787,54 @@ def measure(
|
|
| 1659 |
current_view = processed_data[view_keys[current_view_index]]
|
| 1660 |
|
| 1661 |
if current_view is None:
|
| 1662 |
-
return None, [], "
|
| 1663 |
|
| 1664 |
point2d = event.index[0], event.index[1]
|
| 1665 |
-
print(f"
|
| 1666 |
|
|
|
|
| 1667 |
if (
|
| 1668 |
current_view["mask"] is not None
|
| 1669 |
and 0 <= point2d[1] < current_view["mask"].shape[0]
|
| 1670 |
and 0 <= point2d[0] < current_view["mask"].shape[1]
|
| 1671 |
):
|
|
|
|
| 1672 |
if not current_view["mask"][point2d[1], point2d[0]]:
|
| 1673 |
-
print(f"
|
|
|
|
| 1674 |
masked_image, _ = update_measure_view(
|
| 1675 |
processed_data, current_view_index
|
| 1676 |
)
|
| 1677 |
return (
|
| 1678 |
masked_image,
|
| 1679 |
measure_points,
|
| 1680 |
-
'<span style="color: red; font-weight: bold;"
|
| 1681 |
)
|
| 1682 |
|
| 1683 |
measure_points.append(point2d)
|
| 1684 |
|
|
|
|
| 1685 |
image, _ = update_measure_view(processed_data, current_view_index)
|
| 1686 |
if image is None:
|
| 1687 |
-
return None, [], "
|
| 1688 |
|
| 1689 |
image = image.copy()
|
| 1690 |
points3d = current_view["points3d"]
|
| 1691 |
|
|
|
|
| 1692 |
try:
|
| 1693 |
if image.dtype != np.uint8:
|
| 1694 |
if image.max() <= 1.0:
|
|
|
|
| 1695 |
image = (image * 255).astype(np.uint8)
|
| 1696 |
else:
|
|
|
|
| 1697 |
image = image.astype(np.uint8)
|
| 1698 |
except Exception as e:
|
| 1699 |
-
print(f"
|
| 1700 |
-
return None, [], f"
|
| 1701 |
|
|
|
|
| 1702 |
try:
|
| 1703 |
for p in measure_points:
|
| 1704 |
if 0 <= p[0] < image.shape[1] and 0 <= p[1] < image.shape[0]:
|
|
@@ -1706,8 +842,8 @@ def measure(
|
|
| 1706 |
image, p, radius=5, color=(255, 0, 0), thickness=2
|
| 1707 |
)
|
| 1708 |
except Exception as e:
|
| 1709 |
-
print(f"
|
| 1710 |
-
return None, [], f"
|
| 1711 |
|
| 1712 |
depth_text = ""
|
| 1713 |
try:
|
|
@@ -1718,22 +854,24 @@ def measure(
|
|
| 1718 |
and 0 <= p[0] < current_view["depth"].shape[1]
|
| 1719 |
):
|
| 1720 |
d = current_view["depth"][p[1], p[0]]
|
| 1721 |
-
depth_text += f"- **P{i + 1}
|
| 1722 |
else:
|
|
|
|
| 1723 |
if (
|
| 1724 |
points3d is not None
|
| 1725 |
and 0 <= p[1] < points3d.shape[0]
|
| 1726 |
and 0 <= p[0] < points3d.shape[1]
|
| 1727 |
):
|
| 1728 |
z = points3d[p[1], p[0], 2]
|
| 1729 |
-
depth_text += f"- **P{i + 1} Z
|
| 1730 |
except Exception as e:
|
| 1731 |
-
print(f"
|
| 1732 |
-
depth_text = f"
|
| 1733 |
|
| 1734 |
if len(measure_points) == 2:
|
| 1735 |
try:
|
| 1736 |
point1, point2 = measure_points
|
|
|
|
| 1737 |
if (
|
| 1738 |
0 <= point1[0] < image.shape[1]
|
| 1739 |
and 0 <= point1[1] < image.shape[0]
|
|
@@ -1744,7 +882,8 @@ def measure(
|
|
| 1744 |
image, point1, point2, color=(255, 0, 0), thickness=2
|
| 1745 |
)
|
| 1746 |
|
| 1747 |
-
|
|
|
|
| 1748 |
if (
|
| 1749 |
points3d is not None
|
| 1750 |
and 0 <= point1[1] < points3d.shape[0]
|
|
@@ -1756,35 +895,39 @@ def measure(
|
|
| 1756 |
p1_3d = points3d[point1[1], point1[0]]
|
| 1757 |
p2_3d = points3d[point2[1], point2[0]]
|
| 1758 |
distance = np.linalg.norm(p1_3d - p2_3d)
|
| 1759 |
-
distance_text = f"-
|
| 1760 |
except Exception as e:
|
| 1761 |
-
print(f"
|
| 1762 |
-
distance_text = f"-
|
| 1763 |
|
| 1764 |
measure_points = []
|
| 1765 |
text = depth_text + distance_text
|
| 1766 |
-
print(f"
|
| 1767 |
return [image, measure_points, text]
|
| 1768 |
except Exception as e:
|
| 1769 |
-
print(f"
|
| 1770 |
-
return None, [], f"
|
| 1771 |
else:
|
| 1772 |
-
print(f"
|
| 1773 |
return [image, measure_points, depth_text]
|
| 1774 |
|
| 1775 |
except Exception as e:
|
| 1776 |
-
print(f"
|
| 1777 |
-
return None, [], f"
|
| 1778 |
|
| 1779 |
|
| 1780 |
def clear_fields():
|
| 1781 |
-
"""
|
| 1782 |
-
|
|
|
|
|
|
|
| 1783 |
|
| 1784 |
|
| 1785 |
def update_log():
|
| 1786 |
-
"""
|
| 1787 |
-
|
|
|
|
|
|
|
| 1788 |
|
| 1789 |
|
| 1790 |
def update_visualization(
|
|
@@ -1796,16 +939,30 @@ def update_visualization(
|
|
| 1796 |
filter_white_bg=False,
|
| 1797 |
show_mesh=True,
|
| 1798 |
):
|
| 1799 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1800 |
if is_example == "True":
|
| 1801 |
-
return
|
|
|
|
|
|
|
|
|
|
| 1802 |
|
| 1803 |
if not target_dir or target_dir == "None" or not os.path.isdir(target_dir):
|
| 1804 |
-
return
|
|
|
|
|
|
|
|
|
|
| 1805 |
|
| 1806 |
predictions_path = os.path.join(target_dir, "predictions.npz")
|
| 1807 |
if not os.path.exists(predictions_path):
|
| 1808 |
-
return
|
|
|
|
|
|
|
|
|
|
| 1809 |
|
| 1810 |
loaded = np.load(predictions_path, allow_pickle=True)
|
| 1811 |
predictions = {key: loaded[key] for key in loaded.keys()}
|
|
@@ -1815,17 +972,21 @@ def update_visualization(
|
|
| 1815 |
f"glbscene_{frame_filter.replace('.', '_').replace(':', '').replace(' ', '_')}_cam{show_cam}_mesh{show_mesh}_black{filter_black_bg}_white{filter_white_bg}.glb",
|
| 1816 |
)
|
| 1817 |
|
| 1818 |
-
|
| 1819 |
-
|
| 1820 |
-
|
| 1821 |
-
|
| 1822 |
-
|
| 1823 |
-
|
| 1824 |
-
|
| 1825 |
-
|
| 1826 |
-
|
|
|
|
| 1827 |
|
| 1828 |
-
return
|
|
|
|
|
|
|
|
|
|
| 1829 |
|
| 1830 |
|
| 1831 |
def update_all_views_on_filter_change(
|
|
@@ -1837,7 +998,11 @@ def update_all_views_on_filter_change(
|
|
| 1837 |
normal_view_selector,
|
| 1838 |
measure_view_selector,
|
| 1839 |
):
|
| 1840 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1841 |
if not target_dir or target_dir == "None" or not os.path.isdir(target_dir):
|
| 1842 |
return processed_data, None, None, None, []
|
| 1843 |
|
|
@@ -1846,16 +1011,20 @@ def update_all_views_on_filter_change(
|
|
| 1846 |
return processed_data, None, None, None, []
|
| 1847 |
|
| 1848 |
try:
|
|
|
|
| 1849 |
loaded = np.load(predictions_path, allow_pickle=True)
|
| 1850 |
predictions = {key: loaded[key] for key in loaded.keys()}
|
| 1851 |
|
|
|
|
| 1852 |
image_folder_path = os.path.join(target_dir, "images")
|
| 1853 |
views = load_images(image_folder_path)
|
| 1854 |
|
|
|
|
| 1855 |
new_processed_data = process_predictions_for_visualization(
|
| 1856 |
predictions, views, high_level_config, filter_black_bg, filter_white_bg
|
| 1857 |
)
|
| 1858 |
|
|
|
|
| 1859 |
try:
|
| 1860 |
depth_view_idx = (
|
| 1861 |
int(depth_view_selector.split()[1]) - 1 if depth_view_selector else 0
|
|
@@ -1879,6 +1048,7 @@ def update_all_views_on_filter_change(
|
|
| 1879 |
except:
|
| 1880 |
measure_view_idx = 0
|
| 1881 |
|
|
|
|
| 1882 |
depth_vis = update_depth_view(new_processed_data, depth_view_idx)
|
| 1883 |
normal_vis = update_normal_view(new_processed_data, normal_view_idx)
|
| 1884 |
measure_img, _ = update_measure_view(new_processed_data, measure_view_idx)
|
|
@@ -1890,10 +1060,9 @@ def update_all_views_on_filter_change(
|
|
| 1890 |
return processed_data, None, None, None, []
|
| 1891 |
|
| 1892 |
|
| 1893 |
-
#
|
| 1894 |
-
# Example
|
| 1895 |
-
#
|
| 1896 |
-
|
| 1897 |
def get_scene_info(examples_dir):
|
| 1898 |
"""Get information about scenes in the examples directory"""
|
| 1899 |
import glob
|
|
@@ -1905,6 +1074,7 @@ def get_scene_info(examples_dir):
|
|
| 1905 |
for scene_folder in sorted(os.listdir(examples_dir)):
|
| 1906 |
scene_path = os.path.join(examples_dir, scene_folder)
|
| 1907 |
if os.path.isdir(scene_path):
|
|
|
|
| 1908 |
image_extensions = ["*.jpg", "*.jpeg", "*.png", "*.bmp", "*.tiff", "*.tif"]
|
| 1909 |
image_files = []
|
| 1910 |
for ext in image_extensions:
|
|
@@ -1912,6 +1082,7 @@ def get_scene_info(examples_dir):
|
|
| 1912 |
image_files.extend(glob.glob(os.path.join(scene_path, ext.upper())))
|
| 1913 |
|
| 1914 |
if image_files:
|
|
|
|
| 1915 |
image_files = sorted(image_files)
|
| 1916 |
first_image = image_files[0]
|
| 1917 |
num_images = len(image_files)
|
|
@@ -1930,9 +1101,10 @@ def get_scene_info(examples_dir):
|
|
| 1930 |
|
| 1931 |
|
| 1932 |
def load_example_scene(scene_name, examples_dir="examples"):
|
| 1933 |
-
"""
|
| 1934 |
scenes = get_scene_info(examples_dir)
|
| 1935 |
|
|
|
|
| 1936 |
selected_scene = None
|
| 1937 |
for scene in scenes:
|
| 1938 |
if scene["name"] == scene_name:
|
|
@@ -1940,26 +1112,28 @@ def load_example_scene(scene_name, examples_dir="examples"):
|
|
| 1940 |
break
|
| 1941 |
|
| 1942 |
if selected_scene is None:
|
| 1943 |
-
return None, None, None, "
|
| 1944 |
|
|
|
|
|
|
|
| 1945 |
file_objects = []
|
| 1946 |
for image_path in selected_scene["image_files"]:
|
| 1947 |
file_objects.append(image_path)
|
| 1948 |
|
|
|
|
| 1949 |
target_dir, image_paths = handle_uploads(file_objects, 1.0)
|
| 1950 |
|
| 1951 |
return (
|
| 1952 |
-
None,
|
| 1953 |
-
target_dir,
|
| 1954 |
-
image_paths,
|
| 1955 |
-
f"
|
| 1956 |
)
|
| 1957 |
|
| 1958 |
|
| 1959 |
-
#
|
| 1960 |
-
# Gradio UI
|
| 1961 |
-
#
|
| 1962 |
-
|
| 1963 |
theme = get_gradio_theme()
|
| 1964 |
|
| 1965 |
# 自定义CSS防止UI抖动
|
|
@@ -2022,45 +1196,44 @@ CUSTOM_CSS = GRADIO_CSS + """
|
|
| 2022 |
}
|
| 2023 |
"""
|
| 2024 |
|
| 2025 |
-
|
| 2026 |
-
|
| 2027 |
-
<script>
|
| 2028 |
-
// 添加粘贴板支持
|
| 2029 |
-
document.addEventListener('paste', function(e) {
|
| 2030 |
-
const items = e.clipboardData.items;
|
| 2031 |
-
for (let i = 0; i < items.length; i++) {
|
| 2032 |
-
if (items[i].type.indexOf('image') !== -1) {
|
| 2033 |
-
const blob = items[i].getAsFile();
|
| 2034 |
-
const fileInput = document.querySelector('input[type="file"][multiple]');
|
| 2035 |
-
if (fileInput) {
|
| 2036 |
-
const dataTransfer = new DataTransfer();
|
| 2037 |
-
dataTransfer.items.add(blob);
|
| 2038 |
-
fileInput.files = dataTransfer.files;
|
| 2039 |
-
fileInput.dispatchEvent(new Event('change', { bubbles: true }));
|
| 2040 |
-
console.log('✅ 图片已从剪贴板粘贴');
|
| 2041 |
-
}
|
| 2042 |
-
}
|
| 2043 |
-
}
|
| 2044 |
-
});
|
| 2045 |
-
|
| 2046 |
-
// 添加提示信息
|
| 2047 |
-
console.log('💡 粘贴板功能已启用:使用 Ctrl+V 可直接粘贴截图');
|
| 2048 |
-
</script>
|
| 2049 |
-
"""
|
| 2050 |
-
|
| 2051 |
-
with gr.Blocks(theme=theme, css=CUSTOM_CSS, title="MapAnything V2 - 3D重建与物体分割") as demo:
|
| 2052 |
is_example = gr.Textbox(label="is_example", visible=False, value="None")
|
|
|
|
| 2053 |
processed_data_state = gr.State(value=None)
|
| 2054 |
measure_points_state = gr.State(value=[])
|
|
|
|
| 2055 |
|
| 2056 |
# 添加粘贴板支持的 JavaScript
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2057 |
gr.HTML(PASTE_JS)
|
| 2058 |
-
|
| 2059 |
-
#
|
| 2060 |
gr.HTML("""
|
| 2061 |
<div style="text-align: center; margin: 20px 0;">
|
| 2062 |
-
<h2 style="color: #1976D2; margin-bottom: 10px;">MapAnything
|
| 2063 |
-
<p style="color: #666; font-size: 16px;"
|
| 2064 |
</div>
|
| 2065 |
""")
|
| 2066 |
|
|
@@ -2133,23 +1306,6 @@ with gr.Blocks(theme=theme, css=CUSTOM_CSS, title="MapAnything V2 - 3D重建与
|
|
| 2133 |
clear_color=[0.0, 0.0, 0.0, 0.0]
|
| 2134 |
)
|
| 2135 |
|
| 2136 |
-
with gr.Tab("🎨 分割3D"):
|
| 2137 |
-
gr.Markdown(
|
| 2138 |
-
"""
|
| 2139 |
-
💡 **使用说明**:
|
| 2140 |
-
1. 在下方「⚙️ 高级选项」中勾选「启用语义分割 (CPU)」
|
| 2141 |
-
2. 点击「开始重建」按钮
|
| 2142 |
-
3. 等待处理完成后,分割结果将显示在此处
|
| 2143 |
-
|
| 2144 |
-
📌 如果没有显示分割结果,请查看控制台日志查找原因
|
| 2145 |
-
""",
|
| 2146 |
-
elem_classes=["info-box"]
|
| 2147 |
-
)
|
| 2148 |
-
segmented_output = gr.Model3D(
|
| 2149 |
-
height=450, zoom_speed=0.5, pan_speed=0.5,
|
| 2150 |
-
clear_color=[0.0, 0.0, 0.0, 0.0]
|
| 2151 |
-
)
|
| 2152 |
-
|
| 2153 |
with gr.Tab("📊 深度图"):
|
| 2154 |
with gr.Row(elem_classes=["navigation-row"]):
|
| 2155 |
prev_depth_btn = gr.Button("◀", size="sm", scale=1)
|
|
@@ -2200,8 +1356,8 @@ with gr.Blocks(theme=theme, css=CUSTOM_CSS, title="MapAnything V2 - 3D重建与
|
|
| 2200 |
max_lines=1
|
| 2201 |
)
|
| 2202 |
|
| 2203 |
-
#
|
| 2204 |
-
with gr.Accordion("⚙️ 高级选项", open=
|
| 2205 |
with gr.Row(equal_height=False):
|
| 2206 |
with gr.Column(scale=1, min_width=300):
|
| 2207 |
gr.Markdown("#### 可视化参数")
|
|
@@ -2218,32 +1374,13 @@ with gr.Blocks(theme=theme, css=CUSTOM_CSS, title="MapAnything V2 - 3D重建与
|
|
| 2218 |
apply_mask_checkbox = gr.Checkbox(
|
| 2219 |
label="应用深度掩码", value=True
|
| 2220 |
)
|
| 2221 |
-
|
| 2222 |
-
gr.Markdown("#### 分割参数")
|
| 2223 |
-
gr.Markdown("💡 **说明**: 分割使用 CPU 运行(MobileSAM轻量级模型),不占用GPU资源")
|
| 2224 |
-
enable_segmentation = gr.Checkbox(
|
| 2225 |
-
label="启用语义分割 (CPU)", value=False
|
| 2226 |
-
)
|
| 2227 |
-
|
| 2228 |
-
text_prompt = gr.Textbox(
|
| 2229 |
-
value=DEFAULT_TEXT_PROMPT,
|
| 2230 |
-
label="检测物体(用 . 分隔)",
|
| 2231 |
-
placeholder="例如: chair . table . sofa",
|
| 2232 |
-
lines=2,
|
| 2233 |
-
max_lines=2
|
| 2234 |
-
)
|
| 2235 |
-
|
| 2236 |
-
with gr.Row():
|
| 2237 |
-
detect_all_btn = gr.Button("🔍 检测所有", size="sm")
|
| 2238 |
-
restore_default_btn = gr.Button("↻ 默认", size="sm")
|
| 2239 |
-
|
| 2240 |
-
gr.Markdown("📌 **提示**: 启用后会在「分割3D」标签页显示彩色分割模型")
|
| 2241 |
-
|
| 2242 |
# 示例场景(可折叠)
|
| 2243 |
with gr.Accordion("🖼️ 示例场景", open=False):
|
|
|
|
| 2244 |
scenes = get_scene_info("examples")
|
|
|
|
| 2245 |
if scenes:
|
| 2246 |
-
for i in range(0, len(scenes), 4):
|
| 2247 |
with gr.Row(equal_height=True):
|
| 2248 |
for j in range(4):
|
| 2249 |
scene_idx = i + j
|
|
@@ -2251,10 +1388,10 @@ with gr.Blocks(theme=theme, css=CUSTOM_CSS, title="MapAnything V2 - 3D重建与
|
|
| 2251 |
scene = scenes[scene_idx]
|
| 2252 |
with gr.Column(scale=1, min_width=150):
|
| 2253 |
scene_img = gr.Image(
|
| 2254 |
-
value=scene["thumbnail"],
|
| 2255 |
height=150,
|
| 2256 |
-
interactive=False,
|
| 2257 |
-
show_label=False,
|
| 2258 |
sources=[],
|
| 2259 |
container=False
|
| 2260 |
)
|
|
@@ -2266,22 +1403,14 @@ with gr.Blocks(theme=theme, css=CUSTOM_CSS, title="MapAnything V2 - 3D重建与
|
|
| 2266 |
fn=lambda name=scene["name"]: load_example_scene(name),
|
| 2267 |
outputs=[
|
| 2268 |
reconstruction_output,
|
| 2269 |
-
target_dir_output,
|
| 2270 |
-
|
|
|
|
|
|
|
| 2271 |
)
|
| 2272 |
|
| 2273 |
# === 事件绑定 ===
|
| 2274 |
|
| 2275 |
-
# 分割选项按钮
|
| 2276 |
-
detect_all_btn.click(
|
| 2277 |
-
fn=lambda: COMMON_OBJECTS_PROMPT,
|
| 2278 |
-
outputs=[text_prompt]
|
| 2279 |
-
)
|
| 2280 |
-
restore_default_btn.click(
|
| 2281 |
-
fn=lambda: DEFAULT_TEXT_PROMPT,
|
| 2282 |
-
outputs=[text_prompt]
|
| 2283 |
-
)
|
| 2284 |
-
|
| 2285 |
# 上传文件自动更新
|
| 2286 |
def update_gallery_on_unified_upload(files, interval):
|
| 2287 |
if not files:
|
|
@@ -2411,7 +1540,7 @@ with gr.Blocks(theme=theme, css=CUSTOM_CSS, title="MapAnything V2 - 3D重建与
|
|
| 2411 |
# 重建按钮
|
| 2412 |
submit_btn.click(
|
| 2413 |
fn=clear_fields,
|
| 2414 |
-
outputs=[reconstruction_output
|
| 2415 |
).then(
|
| 2416 |
fn=update_log,
|
| 2417 |
outputs=[log_output]
|
|
@@ -2420,11 +1549,10 @@ with gr.Blocks(theme=theme, css=CUSTOM_CSS, title="MapAnything V2 - 3D重建与
|
|
| 2420 |
inputs=[
|
| 2421 |
target_dir_output, frame_filter, show_cam,
|
| 2422 |
filter_black_bg, filter_white_bg,
|
| 2423 |
-
apply_mask_checkbox, show_mesh
|
| 2424 |
-
enable_segmentation, text_prompt
|
| 2425 |
],
|
| 2426 |
outputs=[
|
| 2427 |
-
reconstruction_output,
|
| 2428 |
processed_data_state, depth_map, normal_map, measure_image,
|
| 2429 |
measure_text, depth_view_selector, normal_view_selector, measure_view_selector
|
| 2430 |
]
|
|
@@ -2434,8 +1562,8 @@ with gr.Blocks(theme=theme, css=CUSTOM_CSS, title="MapAnything V2 - 3D重建与
|
|
| 2434 |
)
|
| 2435 |
|
| 2436 |
# 清空按钮
|
| 2437 |
-
clear_btn.add([reconstruction_output,
|
| 2438 |
-
|
| 2439 |
# 可视化参数实时更新
|
| 2440 |
for component in [frame_filter, show_cam, show_mesh]:
|
| 2441 |
component.change(
|
|
@@ -2457,7 +1585,7 @@ with gr.Blocks(theme=theme, css=CUSTOM_CSS, title="MapAnything V2 - 3D重建与
|
|
| 2457 |
],
|
| 2458 |
outputs=[processed_data_state, depth_map, normal_map, measure_image, measure_points_state]
|
| 2459 |
)
|
| 2460 |
-
|
| 2461 |
# 深度图导航
|
| 2462 |
prev_depth_btn.click(
|
| 2463 |
fn=lambda pd, cs: navigate_depth_view(pd, cs, -1),
|
|
@@ -2514,17 +1642,4 @@ with gr.Blocks(theme=theme, css=CUSTOM_CSS, title="MapAnything V2 - 3D重建与
|
|
| 2514 |
outputs=[measure_image, measure_points_state]
|
| 2515 |
)
|
| 2516 |
|
| 2517 |
-
# 启动信息
|
| 2518 |
-
print("\n" + "="*70)
|
| 2519 |
-
print("🚀 MapAnything V2 - 3D重建与物体分割")
|
| 2520 |
-
print("="*70)
|
| 2521 |
-
print("📊 核心技术: 自适应DBSCAN聚类 + 多视图融合")
|
| 2522 |
-
print(f"🔧 质量控制: 置信度≥{MIN_DETECTION_CONFIDENCE} | 面积≥{MIN_MASK_AREA}px")
|
| 2523 |
-
print(f"🎯 聚类半径: 沙发{DBSCAN_EPS_CONFIG['sofa']}m | 桌子{DBSCAN_EPS_CONFIG['table']}m | 窗户{DBSCAN_EPS_CONFIG['window']}m | 默认{DBSCAN_EPS_CONFIG['default']}m")
|
| 2524 |
-
print("\n💡 分割配置 (CPU优化):")
|
| 2525 |
-
print(f" - 检测模型: {GROUNDING_DINO_MODEL_ID} (CPU)")
|
| 2526 |
-
print(f" - 分割模型: {SAM_MODEL_ID} (MobileSAM, 10MB, CPU)")
|
| 2527 |
-
print(f" - 运行设备: CPU (不占用GPU资源,适合分离部署)")
|
| 2528 |
-
print("="*70 + "\n")
|
| 2529 |
-
|
| 2530 |
demo.queue(max_size=20).launch(show_error=True, share=True, ssr_mode=False)
|
|
|
|
| 5 |
# LICENSE file in the root directory of this source tree.
|
| 6 |
|
| 7 |
"""
|
| 8 |
+
MapAnything V2 - 3D重建系统(中文版)
|
| 9 |
+
- 多视图 3D 重建
|
| 10 |
+
- 深度估计与法线计算
|
| 11 |
+
- 距离测量功能
|
|
|
|
| 12 |
"""
|
| 13 |
|
| 14 |
import gc
|
|
|
|
| 17 |
import sys
|
| 18 |
import time
|
| 19 |
from datetime import datetime
|
|
|
|
|
|
|
| 20 |
|
| 21 |
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
|
| 22 |
|
|
|
|
| 25 |
import numpy as np
|
| 26 |
import spaces
|
| 27 |
import torch
|
|
|
|
| 28 |
from PIL import Image
|
| 29 |
from pillow_heif import register_heif_opener
|
|
|
|
| 30 |
|
| 31 |
register_heif_opener()
|
| 32 |
|
|
|
|
| 60 |
return None
|
| 61 |
|
| 62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
# MapAnything Configuration
|
| 64 |
high_level_config = {
|
| 65 |
"path": "configs/train.yaml",
|
|
|
|
| 80 |
"resolution": 518,
|
| 81 |
}
|
| 82 |
|
| 83 |
+
# Initialize model - this will be done on GPU when needed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
model = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
|
| 87 |
+
# -------------------------------------------------------------------------
|
| 88 |
+
# 1) Core model inference
|
| 89 |
+
# -------------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
@spaces.GPU(duration=120)
|
| 91 |
def run_model(
|
| 92 |
target_dir,
|
|
|
|
| 94 |
mask_edges=True,
|
| 95 |
filter_black_bg=False,
|
| 96 |
filter_white_bg=False,
|
|
|
|
|
|
|
| 97 |
progress=gr.Progress(),
|
| 98 |
):
|
| 99 |
"""
|
| 100 |
+
Run the MapAnything model on images in the 'target_dir/images' folder and return predictions.
|
| 101 |
"""
|
| 102 |
global model
|
| 103 |
+
import torch # Ensure torch is available in function scope
|
| 104 |
|
| 105 |
+
start_time = time.time()
|
| 106 |
print(f"Processing images from {target_dir}")
|
| 107 |
|
| 108 |
+
# Device check
|
| 109 |
+
progress(0, desc="🔧 初始化设备...")
|
| 110 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 111 |
device = torch.device(device)
|
| 112 |
|
| 113 |
+
# Initialize model if not already done
|
| 114 |
+
progress(0.05, desc="📥 加载模型... (~5秒)")
|
| 115 |
if model is None:
|
| 116 |
model = initialize_mapanything_model(high_level_config, device)
|
| 117 |
else:
|
|
|
|
| 119 |
|
| 120 |
model.eval()
|
| 121 |
|
| 122 |
+
# Load images using MapAnything's load_images function
|
| 123 |
+
progress(0.15, desc="📷 加载图片... (~2秒)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
print("Loading images...")
|
| 125 |
image_folder_path = os.path.join(target_dir, "images")
|
| 126 |
views = load_images(image_folder_path)
|
|
|
|
| 130 |
raise ValueError("No images found. Check your upload.")
|
| 131 |
|
| 132 |
# Run model inference
|
| 133 |
+
num_images = len(views)
|
| 134 |
+
estimated_time = num_images * 3 # 估计每张图片3秒
|
| 135 |
+
progress(0.2, desc=f"🚀 运行3D重建... ({num_images}张图片,预计{estimated_time}秒)")
|
| 136 |
print("Running inference...")
|
| 137 |
+
|
| 138 |
+
inference_start = time.time()
|
| 139 |
outputs = model.infer(
|
| 140 |
views, apply_mask=apply_mask, mask_edges=True, memory_efficient_inference=False
|
| 141 |
)
|
| 142 |
+
inference_time = time.time() - inference_start
|
| 143 |
|
| 144 |
+
# Convert predictions to format expected by visualization
|
| 145 |
+
progress(0.6, desc=f"🔄 处理预测结果... (推理耗时: {inference_time:.1f}秒)")
|
| 146 |
predictions = {}
|
| 147 |
+
|
| 148 |
+
# Initialize lists for the required keys
|
| 149 |
extrinsic_list = []
|
| 150 |
intrinsic_list = []
|
| 151 |
world_points_list = []
|
|
|
|
| 153 |
images_list = []
|
| 154 |
final_mask_list = []
|
| 155 |
|
| 156 |
+
# Loop through the outputs
|
| 157 |
+
for i, pred in enumerate(outputs):
|
| 158 |
+
if i % max(1, len(outputs) // 5) == 0:
|
| 159 |
+
progress(0.6 + (i / len(outputs)) * 0.25, desc=f"🔄 处理视图 {i+1}/{len(outputs)}...")
|
| 160 |
+
# Extract data from predictions
|
| 161 |
+
depthmap_torch = pred["depth_z"][0].squeeze(-1) # (H, W)
|
| 162 |
+
intrinsics_torch = pred["intrinsics"][0] # (3, 3)
|
| 163 |
+
camera_pose_torch = pred["camera_poses"][0] # (4, 4)
|
| 164 |
|
| 165 |
+
# Compute new pts3d using depth, intrinsics, and camera pose
|
| 166 |
pts3d_computed, valid_mask = depthmap_to_world_frame(
|
| 167 |
depthmap_torch, intrinsics_torch, camera_pose_torch
|
| 168 |
)
|
| 169 |
|
| 170 |
+
# Convert to numpy arrays for visualization
|
| 171 |
+
# Check if mask key exists in pred, if not, fill with boolean trues in the size of depthmap_torch
|
| 172 |
if "mask" in pred:
|
| 173 |
mask = pred["mask"][0].squeeze(-1).cpu().numpy().astype(bool)
|
| 174 |
else:
|
| 175 |
+
# Fill with boolean trues in the size of depthmap_torch
|
| 176 |
mask = np.ones_like(depthmap_torch.cpu().numpy(), dtype=bool)
|
| 177 |
|
| 178 |
+
# Combine with valid depth mask
|
| 179 |
mask = mask & valid_mask.cpu().numpy()
|
| 180 |
+
|
| 181 |
image = pred["img_no_norm"][0].cpu().numpy()
|
| 182 |
|
| 183 |
+
# Append to lists
|
| 184 |
extrinsic_list.append(camera_pose_torch.cpu().numpy())
|
| 185 |
intrinsic_list.append(intrinsics_torch.cpu().numpy())
|
| 186 |
world_points_list.append(pts3d_computed.cpu().numpy())
|
| 187 |
depth_maps_list.append(depthmap_torch.cpu().numpy())
|
| 188 |
+
images_list.append(image) # Add image to list
|
| 189 |
+
final_mask_list.append(mask) # Add final_mask to list
|
| 190 |
|
| 191 |
+
# Convert lists to numpy arrays with required shapes
|
| 192 |
+
# extrinsic: (S, 3, 4) - batch of camera extrinsic matrices
|
| 193 |
predictions["extrinsic"] = np.stack(extrinsic_list, axis=0)
|
| 194 |
+
|
| 195 |
+
# intrinsic: (S, 3, 3) - batch of camera intrinsic matrices
|
| 196 |
predictions["intrinsic"] = np.stack(intrinsic_list, axis=0)
|
| 197 |
+
|
| 198 |
+
# world_points: (S, H, W, 3) - batch of 3D world points
|
| 199 |
predictions["world_points"] = np.stack(world_points_list, axis=0)
|
| 200 |
|
| 201 |
+
# depth: (S, H, W, 1) or (S, H, W) - batch of depth maps
|
| 202 |
depth_maps = np.stack(depth_maps_list, axis=0)
|
| 203 |
+
# Add channel dimension if needed to match (S, H, W, 1) format
|
| 204 |
if len(depth_maps.shape) == 3:
|
| 205 |
depth_maps = depth_maps[..., np.newaxis]
|
| 206 |
+
|
| 207 |
predictions["depth"] = depth_maps
|
| 208 |
|
| 209 |
+
# images: (S, H, W, 3) - batch of input images
|
| 210 |
predictions["images"] = np.stack(images_list, axis=0)
|
| 211 |
+
|
| 212 |
+
# final_mask: (S, H, W) - batch of final masks for filtering
|
| 213 |
predictions["final_mask"] = np.stack(final_mask_list, axis=0)
|
| 214 |
|
| 215 |
+
# Process data for visualization tabs (depth, normal, measure)
|
| 216 |
+
progress(0.85, desc="🎨 生成深度图与法线图...")
|
| 217 |
processed_data = process_predictions_for_visualization(
|
| 218 |
predictions, views, high_level_config, filter_black_bg, filter_white_bg
|
| 219 |
)
|
| 220 |
|
| 221 |
+
# Clean up
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
progress(0.95, desc="🧹 清理内存...")
|
| 223 |
torch.cuda.empty_cache()
|
| 224 |
|
| 225 |
+
total_time = time.time() - start_time
|
| 226 |
+
progress(1.0, desc=f"✅ 完成!总耗时: {total_time:.1f}秒")
|
| 227 |
+
print(f"Total processing time: {total_time:.2f} seconds")
|
| 228 |
|
| 229 |
+
return predictions, processed_data
|
| 230 |
|
|
|
|
|
|
|
|
|
|
| 231 |
|
| 232 |
def update_view_selectors(processed_data):
|
| 233 |
"""Update view selector dropdowns based on available views"""
|
|
|
|
| 238 |
choices = [f"View {i + 1}" for i in range(num_views)]
|
| 239 |
|
| 240 |
return (
|
| 241 |
+
gr.Dropdown(choices=choices, value=choices[0]), # depth_view_selector
|
| 242 |
+
gr.Dropdown(choices=choices, value=choices[0]), # normal_view_selector
|
| 243 |
+
gr.Dropdown(choices=choices, value=choices[0]), # measure_view_selector
|
| 244 |
)
|
| 245 |
|
| 246 |
|
|
|
|
| 278 |
"""Update measure view for a specific view index with mask overlay"""
|
| 279 |
view_data = get_view_data_by_index(processed_data, view_index)
|
| 280 |
if view_data is None:
|
| 281 |
+
return None, [] # image, measure_points
|
| 282 |
|
| 283 |
+
# Get the base image
|
| 284 |
image = view_data["image"].copy()
|
| 285 |
|
| 286 |
+
# Ensure image is in uint8 format
|
| 287 |
if image.dtype != np.uint8:
|
| 288 |
if image.max() <= 1.0:
|
| 289 |
image = (image * 255).astype(np.uint8)
|
| 290 |
else:
|
| 291 |
image = image.astype(np.uint8)
|
| 292 |
|
| 293 |
+
# Apply mask overlay if mask is available
|
| 294 |
if view_data["mask"] is not None:
|
| 295 |
mask = view_data["mask"]
|
| 296 |
+
|
| 297 |
+
# Create light grey overlay for masked areas
|
| 298 |
+
# Masked areas (False values) will be overlaid with light grey
|
| 299 |
+
invalid_mask = ~mask # Areas where mask is False
|
| 300 |
|
| 301 |
if invalid_mask.any():
|
| 302 |
+
# Create a light grey overlay (RGB: 192, 192, 192)
|
| 303 |
overlay_color = np.array([255, 220, 220], dtype=np.uint8)
|
| 304 |
+
|
| 305 |
+
# Apply overlay with some transparency
|
| 306 |
+
alpha = 0.5 # Transparency level
|
| 307 |
+
for c in range(3): # RGB channels
|
| 308 |
image[:, :, c] = np.where(
|
| 309 |
invalid_mask,
|
| 310 |
(1 - alpha) * image[:, :, c] + alpha * overlay_color[c],
|
|
|
|
| 319 |
if processed_data is None or len(processed_data) == 0:
|
| 320 |
return "View 1", None
|
| 321 |
|
| 322 |
+
# Parse current view number
|
| 323 |
try:
|
| 324 |
current_view = int(current_selector_value.split()[1]) - 1
|
| 325 |
except:
|
|
|
|
| 339 |
if processed_data is None or len(processed_data) == 0:
|
| 340 |
return "View 1", None
|
| 341 |
|
| 342 |
+
# Parse current view number
|
| 343 |
try:
|
| 344 |
current_view = int(current_selector_value.split()[1]) - 1
|
| 345 |
except:
|
|
|
|
| 359 |
if processed_data is None or len(processed_data) == 0:
|
| 360 |
return "View 1", None, []
|
| 361 |
|
| 362 |
+
# Parse current view number
|
| 363 |
try:
|
| 364 |
current_view = int(current_selector_value.split()[1]) - 1
|
| 365 |
except:
|
|
|
|
| 379 |
if processed_data is None or len(processed_data) == 0:
|
| 380 |
return None, None, None, []
|
| 381 |
|
| 382 |
+
# Use update functions to ensure confidence filtering is applied from the start
|
| 383 |
depth_vis = update_depth_view(processed_data, 0)
|
| 384 |
normal_vis = update_normal_view(processed_data, 0)
|
| 385 |
measure_img, _ = update_measure_view(processed_data, 0)
|
|
|
|
| 387 |
return depth_vis, normal_vis, measure_img, []
|
| 388 |
|
| 389 |
|
| 390 |
+
# -------------------------------------------------------------------------
|
| 391 |
+
# 2) Handle uploaded video/images --> produce target_dir + images
|
| 392 |
+
# -------------------------------------------------------------------------
|
| 393 |
def handle_uploads(unified_upload, s_time_interval=1.0):
|
| 394 |
"""
|
| 395 |
Create a new 'target_dir' + 'images' subfolder, and place user-uploaded
|
|
|
|
| 399 |
gc.collect()
|
| 400 |
torch.cuda.empty_cache()
|
| 401 |
|
| 402 |
+
# Create a unique folder name
|
| 403 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
|
| 404 |
target_dir = f"input_images_{timestamp}"
|
| 405 |
target_dir_images = os.path.join(target_dir, "images")
|
| 406 |
|
| 407 |
+
# Clean up if somehow that folder already exists
|
| 408 |
if os.path.exists(target_dir):
|
| 409 |
shutil.rmtree(target_dir)
|
| 410 |
os.makedirs(target_dir)
|
|
|
|
| 412 |
|
| 413 |
image_paths = []
|
| 414 |
|
| 415 |
+
# --- Handle uploaded files (both images and videos) ---
|
| 416 |
if unified_upload is not None:
|
| 417 |
for file_data in unified_upload:
|
| 418 |
if isinstance(file_data, dict) and "name" in file_data:
|
|
|
|
| 422 |
|
| 423 |
file_ext = os.path.splitext(file_path)[1].lower()
|
| 424 |
|
| 425 |
+
# Check if it's a video file
|
| 426 |
video_extensions = [
|
| 427 |
+
".mp4",
|
| 428 |
+
".avi",
|
| 429 |
+
".mov",
|
| 430 |
+
".mkv",
|
| 431 |
+
".wmv",
|
| 432 |
+
".flv",
|
| 433 |
+
".webm",
|
| 434 |
+
".m4v",
|
| 435 |
+
".3gp",
|
| 436 |
]
|
| 437 |
if file_ext in video_extensions:
|
| 438 |
+
# Handle as video
|
| 439 |
vs = cv2.VideoCapture(file_path)
|
| 440 |
fps = vs.get(cv2.CAP_PROP_FPS)
|
| 441 |
+
frame_interval = int(fps * s_time_interval) # frames per interval
|
| 442 |
|
| 443 |
count = 0
|
| 444 |
video_frame_num = 0
|
|
|
|
| 448 |
break
|
| 449 |
count += 1
|
| 450 |
if count % frame_interval == 0:
|
| 451 |
+
# Use original filename as prefix for frames
|
| 452 |
base_name = os.path.splitext(os.path.basename(file_path))[0]
|
| 453 |
image_path = os.path.join(
|
| 454 |
target_dir_images, f"{base_name}_{video_frame_num:06}.png"
|
|
|
|
| 457 |
image_paths.append(image_path)
|
| 458 |
video_frame_num += 1
|
| 459 |
vs.release()
|
| 460 |
+
print(
|
| 461 |
+
f"Extracted {video_frame_num} frames from video: {os.path.basename(file_path)}"
|
| 462 |
+
)
|
| 463 |
|
| 464 |
else:
|
| 465 |
+
# Handle as image
|
| 466 |
+
# Check if the file is a HEIC image
|
| 467 |
if file_ext in [".heic", ".heif"]:
|
| 468 |
+
# Convert HEIC to JPEG for better gallery compatibility
|
| 469 |
try:
|
| 470 |
with Image.open(file_path) as img:
|
| 471 |
+
# Convert to RGB if necessary (HEIC can have different color modes)
|
| 472 |
if img.mode not in ("RGB", "L"):
|
| 473 |
img = img.convert("RGB")
|
| 474 |
|
| 475 |
+
# Create JPEG filename
|
| 476 |
base_name = os.path.splitext(os.path.basename(file_path))[0]
|
| 477 |
+
dst_path = os.path.join(
|
| 478 |
+
target_dir_images, f"{base_name}.jpg"
|
| 479 |
+
)
|
| 480 |
|
| 481 |
+
# Save as JPEG with high quality
|
| 482 |
img.save(dst_path, "JPEG", quality=95)
|
| 483 |
image_paths.append(dst_path)
|
| 484 |
+
print(
|
| 485 |
+
f"Converted HEIC to JPEG: {os.path.basename(file_path)} -> {os.path.basename(dst_path)}"
|
| 486 |
+
)
|
| 487 |
except Exception as e:
|
| 488 |
print(f"Error converting HEIC file {file_path}: {e}")
|
| 489 |
+
# Fall back to copying as is
|
| 490 |
+
dst_path = os.path.join(
|
| 491 |
+
target_dir_images, os.path.basename(file_path)
|
| 492 |
+
)
|
| 493 |
shutil.copy(file_path, dst_path)
|
| 494 |
image_paths.append(dst_path)
|
| 495 |
else:
|
| 496 |
+
# Regular image files - copy as is
|
| 497 |
+
dst_path = os.path.join(
|
| 498 |
+
target_dir_images, os.path.basename(file_path)
|
| 499 |
+
)
|
| 500 |
shutil.copy(file_path, dst_path)
|
| 501 |
image_paths.append(dst_path)
|
| 502 |
|
| 503 |
+
# Sort final images for gallery
|
| 504 |
image_paths = sorted(image_paths)
|
| 505 |
|
| 506 |
end_time = time.time()
|
| 507 |
+
print(
|
| 508 |
+
f"Files processed to {target_dir_images}; took {end_time - start_time:.3f} seconds"
|
| 509 |
+
)
|
| 510 |
return target_dir, image_paths
|
| 511 |
|
| 512 |
|
| 513 |
+
# -------------------------------------------------------------------------
|
| 514 |
+
# 3) Update gallery on upload
|
| 515 |
+
# -------------------------------------------------------------------------
|
| 516 |
def update_gallery_on_upload(input_video, input_images, s_time_interval=1.0):
|
| 517 |
+
"""
|
| 518 |
+
Whenever user uploads or changes files, immediately handle them
|
| 519 |
+
and show in the gallery. Return (target_dir, image_paths).
|
| 520 |
+
If nothing is uploaded, returns "None" and empty list.
|
| 521 |
+
"""
|
| 522 |
if not input_video and not input_images:
|
| 523 |
+
return None, None, None, None
|
| 524 |
target_dir, image_paths = handle_uploads(input_video, input_images, s_time_interval)
|
| 525 |
return (
|
|
|
|
| 526 |
None,
|
| 527 |
target_dir,
|
| 528 |
image_paths,
|
| 529 |
+
"上传完成。点击「开始重建」进行3D处理",
|
| 530 |
)
|
| 531 |
|
| 532 |
|
| 533 |
+
# -------------------------------------------------------------------------
|
| 534 |
+
# 4) Reconstruction: uses the target_dir plus any viz parameters
|
| 535 |
+
# -------------------------------------------------------------------------
|
| 536 |
@spaces.GPU(duration=120)
|
| 537 |
def gradio_demo(
|
| 538 |
target_dir,
|
|
|
|
| 542 |
filter_white_bg=False,
|
| 543 |
apply_mask=True,
|
| 544 |
show_mesh=True,
|
|
|
|
|
|
|
| 545 |
progress=gr.Progress(),
|
| 546 |
):
|
| 547 |
+
"""
|
| 548 |
+
Perform reconstruction using the already-created target_dir/images.
|
| 549 |
+
"""
|
| 550 |
if not os.path.isdir(target_dir) or target_dir == "None":
|
| 551 |
+
return None, "❌ 未找到有效的目标目录,请先上传文件", None, None, None, None, None, None, None, None, None
|
| 552 |
|
| 553 |
progress(0, desc="🔄 准备重建...")
|
| 554 |
start_time = time.time()
|
| 555 |
gc.collect()
|
| 556 |
torch.cuda.empty_cache()
|
| 557 |
|
| 558 |
+
# Prepare frame_filter dropdown
|
| 559 |
target_dir_images = os.path.join(target_dir, "images")
|
| 560 |
all_files = (
|
| 561 |
sorted(os.listdir(target_dir_images))
|
|
|
|
| 565 |
all_files = [f"{i}: {filename}" for i, filename in enumerate(all_files)]
|
| 566 |
frame_filter_choices = ["All"] + all_files
|
| 567 |
|
| 568 |
+
progress(0.05, desc=f"🚀 运行 MapAnything 模型... ({len(all_files)}张图片)")
|
| 569 |
+
print("Running MapAnything model...")
|
| 570 |
with torch.no_grad():
|
| 571 |
+
predictions, processed_data = run_model(
|
| 572 |
+
target_dir, apply_mask, True, filter_black_bg, filter_white_bg, progress
|
|
|
|
| 573 |
)
|
| 574 |
|
| 575 |
+
# Save predictions
|
| 576 |
progress(0.92, desc="💾 保存预测结果...")
|
| 577 |
prediction_save_path = os.path.join(target_dir, "predictions.npz")
|
| 578 |
np.savez(prediction_save_path, **predictions)
|
| 579 |
|
| 580 |
+
# Handle None frame_filter
|
| 581 |
if frame_filter is None:
|
| 582 |
frame_filter = "All"
|
| 583 |
|
| 584 |
+
# Build a GLB file name
|
| 585 |
+
progress(0.93, desc="🏗️ 生成3D模型文件...")
|
| 586 |
glbfile = os.path.join(
|
| 587 |
target_dir,
|
| 588 |
+
f"glbscene_{frame_filter.replace('.', '_').replace(':', '').replace(' ', '_')}_cam{show_cam}_mesh{show_mesh}_black{filter_black_bg}_white{filter_white_bg}.glb",
|
| 589 |
)
|
| 590 |
|
| 591 |
+
# Convert predictions to GLB
|
| 592 |
glbscene = predictions_to_glb(
|
| 593 |
predictions,
|
| 594 |
filter_by_frames=frame_filter,
|
| 595 |
show_cam=show_cam,
|
| 596 |
mask_black_bg=filter_black_bg,
|
| 597 |
mask_white_bg=filter_white_bg,
|
| 598 |
+
as_mesh=show_mesh, # Use the show_mesh parameter
|
| 599 |
)
|
| 600 |
glbscene.export(file_obj=glbfile)
|
| 601 |
|
| 602 |
+
# Cleanup
|
| 603 |
progress(0.96, desc="🧹 清理内存...")
|
| 604 |
del predictions
|
| 605 |
gc.collect()
|
| 606 |
torch.cuda.empty_cache()
|
| 607 |
|
| 608 |
end_time = time.time()
|
| 609 |
+
total_time = end_time - start_time
|
| 610 |
+
print(f"总耗时: {total_time:.2f}秒")
|
| 611 |
+
log_msg = f"✅ 重建成功 ({len(all_files)} 帧,耗时 {total_time:.1f}秒)"
|
| 612 |
|
| 613 |
+
# Populate visualization tabs with processed data
|
| 614 |
progress(0.98, desc="🎨 生成可视化...")
|
| 615 |
depth_vis, normal_vis, measure_img, measure_pts = populate_visualization_tabs(
|
| 616 |
processed_data
|
| 617 |
)
|
| 618 |
|
| 619 |
+
# Update view selectors based on available views
|
| 620 |
depth_selector, normal_selector, measure_selector = update_view_selectors(
|
| 621 |
processed_data
|
| 622 |
)
|
| 623 |
|
| 624 |
progress(1.0, desc="✅ 全部完成!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 625 |
|
| 626 |
return (
|
| 627 |
glbfile,
|
|
|
|
| 628 |
log_msg,
|
| 629 |
gr.Dropdown(choices=frame_filter_choices, value=frame_filter, interactive=True),
|
| 630 |
processed_data,
|
| 631 |
depth_vis,
|
| 632 |
normal_vis,
|
| 633 |
measure_img,
|
| 634 |
+
"", # measure_text (empty initially)
|
| 635 |
depth_selector,
|
| 636 |
normal_selector,
|
| 637 |
measure_selector,
|
| 638 |
)
|
| 639 |
|
| 640 |
|
| 641 |
+
# -------------------------------------------------------------------------
|
| 642 |
+
# 5) Helper functions for UI resets + re-visualization
|
| 643 |
+
# -------------------------------------------------------------------------
|
| 644 |
def colorize_depth(depth_map, mask=None):
|
| 645 |
"""Convert depth map to colorized visualization with optional mask"""
|
| 646 |
if depth_map is None:
|
| 647 |
return None
|
| 648 |
|
| 649 |
+
# Normalize depth to 0-1 range
|
| 650 |
depth_normalized = depth_map.copy()
|
| 651 |
valid_mask = depth_normalized > 0
|
| 652 |
|
| 653 |
+
# Apply additional mask if provided (for background filtering)
|
| 654 |
if mask is not None:
|
| 655 |
valid_mask = valid_mask & mask
|
| 656 |
|
|
|
|
| 661 |
|
| 662 |
depth_normalized[valid_mask] = (depth_normalized[valid_mask] - p5) / (p95 - p5)
|
| 663 |
|
| 664 |
+
# Apply colormap
|
| 665 |
import matplotlib.pyplot as plt
|
| 666 |
|
| 667 |
colormap = plt.cm.turbo_r
|
| 668 |
colored = colormap(depth_normalized)
|
| 669 |
colored = (colored[:, :, :3] * 255).astype(np.uint8)
|
| 670 |
|
| 671 |
+
# Set invalid pixels to white
|
| 672 |
colored[~valid_mask] = [255, 255, 255]
|
| 673 |
|
| 674 |
return colored
|
|
|
|
| 679 |
if normal_map is None:
|
| 680 |
return None
|
| 681 |
|
| 682 |
+
# Create a copy for modification
|
| 683 |
normal_vis = normal_map.copy()
|
| 684 |
|
| 685 |
+
# Apply mask if provided (set masked areas to [0, 0, 0] which becomes grey after normalization)
|
| 686 |
if mask is not None:
|
| 687 |
invalid_mask = ~mask
|
| 688 |
+
normal_vis[invalid_mask] = [0, 0, 0] # Set invalid areas to zero
|
| 689 |
|
| 690 |
+
# Normalize normals to [0, 1] range for visualization
|
| 691 |
normal_vis = (normal_vis + 1.0) / 2.0
|
| 692 |
normal_vis = (normal_vis * 255).astype(np.uint8)
|
| 693 |
|
|
|
|
| 700 |
"""Extract depth, normal, and 3D points from predictions for visualization"""
|
| 701 |
processed_data = {}
|
| 702 |
|
| 703 |
+
# Process each view
|
| 704 |
for view_idx, view in enumerate(views):
|
| 705 |
+
# Get image
|
| 706 |
image = rgb(view["img"], norm_type=high_level_config["data_norm_type"])
|
| 707 |
|
| 708 |
+
# Get predicted points
|
| 709 |
pred_pts3d = predictions["world_points"][view_idx]
|
| 710 |
|
| 711 |
+
# Initialize data for this view
|
| 712 |
view_data = {
|
| 713 |
"image": image[0],
|
| 714 |
"points3d": pred_pts3d,
|
|
|
|
| 717 |
"mask": None,
|
| 718 |
}
|
| 719 |
|
| 720 |
+
# Start with the final mask from predictions
|
| 721 |
mask = predictions["final_mask"][view_idx].copy()
|
| 722 |
|
| 723 |
+
# Apply black background filtering if enabled
|
| 724 |
if filter_black_bg:
|
| 725 |
+
# Get the image colors (ensure they're in 0-255 range)
|
| 726 |
view_colors = image[0] * 255 if image[0].max() <= 1.0 else image[0]
|
| 727 |
+
# Filter out black background pixels (sum of RGB < 16)
|
| 728 |
black_bg_mask = view_colors.sum(axis=2) >= 16
|
| 729 |
mask = mask & black_bg_mask
|
| 730 |
|
| 731 |
+
# Apply white background filtering if enabled
|
| 732 |
if filter_white_bg:
|
| 733 |
+
# Get the image colors (ensure they're in 0-255 range)
|
| 734 |
view_colors = image[0] * 255 if image[0].max() <= 1.0 else image[0]
|
| 735 |
+
# Filter out white background pixels (all RGB > 240)
|
| 736 |
white_bg_mask = ~(
|
| 737 |
(view_colors[:, :, 0] > 240)
|
| 738 |
& (view_colors[:, :, 1] > 240)
|
|
|
|
| 756 |
if processed_data is None or len(processed_data) == 0:
|
| 757 |
return None, [], ""
|
| 758 |
|
| 759 |
+
# Return the first view image
|
| 760 |
first_view = list(processed_data.values())[0]
|
| 761 |
return first_view["image"], [], ""
|
| 762 |
|
|
|
|
| 766 |
):
|
| 767 |
"""Handle measurement on images"""
|
| 768 |
try:
|
| 769 |
+
print(f"Measure function called with selector: {current_view_selector}")
|
| 770 |
|
| 771 |
if processed_data is None or len(processed_data) == 0:
|
| 772 |
+
return None, [], "No data available"
|
| 773 |
|
| 774 |
+
# Use the currently selected view instead of always using the first view
|
| 775 |
try:
|
| 776 |
current_view_index = int(current_view_selector.split()[1]) - 1
|
| 777 |
except:
|
| 778 |
current_view_index = 0
|
| 779 |
|
| 780 |
+
print(f"Using view index: {current_view_index}")
|
| 781 |
|
| 782 |
+
# Get view data safely
|
| 783 |
if current_view_index < 0 or current_view_index >= len(processed_data):
|
| 784 |
current_view_index = 0
|
| 785 |
|
|
|
|
| 787 |
current_view = processed_data[view_keys[current_view_index]]
|
| 788 |
|
| 789 |
if current_view is None:
|
| 790 |
+
return None, [], "No view data available"
|
| 791 |
|
| 792 |
point2d = event.index[0], event.index[1]
|
| 793 |
+
print(f"Clicked point: {point2d}")
|
| 794 |
|
| 795 |
+
# Check if the clicked point is in a masked area (prevent interaction)
|
| 796 |
if (
|
| 797 |
current_view["mask"] is not None
|
| 798 |
and 0 <= point2d[1] < current_view["mask"].shape[0]
|
| 799 |
and 0 <= point2d[0] < current_view["mask"].shape[1]
|
| 800 |
):
|
| 801 |
+
# Check if the point is in a masked (invalid) area
|
| 802 |
if not current_view["mask"][point2d[1], point2d[0]]:
|
| 803 |
+
print(f"Clicked point {point2d} is in masked area, ignoring click")
|
| 804 |
+
# Always return image with mask overlay
|
| 805 |
masked_image, _ = update_measure_view(
|
| 806 |
processed_data, current_view_index
|
| 807 |
)
|
| 808 |
return (
|
| 809 |
masked_image,
|
| 810 |
measure_points,
|
| 811 |
+
'<span style="color: red; font-weight: bold;">Cannot measure on masked areas (shown in grey)</span>',
|
| 812 |
)
|
| 813 |
|
| 814 |
measure_points.append(point2d)
|
| 815 |
|
| 816 |
+
# Get image with mask overlay and ensure it's valid
|
| 817 |
image, _ = update_measure_view(processed_data, current_view_index)
|
| 818 |
if image is None:
|
| 819 |
+
return None, [], "No image available"
|
| 820 |
|
| 821 |
image = image.copy()
|
| 822 |
points3d = current_view["points3d"]
|
| 823 |
|
| 824 |
+
# Ensure image is in uint8 format for proper cv2 operations
|
| 825 |
try:
|
| 826 |
if image.dtype != np.uint8:
|
| 827 |
if image.max() <= 1.0:
|
| 828 |
+
# Image is in [0, 1] range, convert to [0, 255]
|
| 829 |
image = (image * 255).astype(np.uint8)
|
| 830 |
else:
|
| 831 |
+
# Image is already in [0, 255] range
|
| 832 |
image = image.astype(np.uint8)
|
| 833 |
except Exception as e:
|
| 834 |
+
print(f"Image conversion error: {e}")
|
| 835 |
+
return None, [], f"Image conversion error: {e}"
|
| 836 |
|
| 837 |
+
# Draw circles for points
|
| 838 |
try:
|
| 839 |
for p in measure_points:
|
| 840 |
if 0 <= p[0] < image.shape[1] and 0 <= p[1] < image.shape[0]:
|
|
|
|
| 842 |
image, p, radius=5, color=(255, 0, 0), thickness=2
|
| 843 |
)
|
| 844 |
except Exception as e:
|
| 845 |
+
print(f"Drawing error: {e}")
|
| 846 |
+
return None, [], f"Drawing error: {e}"
|
| 847 |
|
| 848 |
depth_text = ""
|
| 849 |
try:
|
|
|
|
| 854 |
and 0 <= p[0] < current_view["depth"].shape[1]
|
| 855 |
):
|
| 856 |
d = current_view["depth"][p[1], p[0]]
|
| 857 |
+
depth_text += f"- **P{i + 1} depth: {d:.2f}m.**\n"
|
| 858 |
else:
|
| 859 |
+
# Use Z coordinate of 3D points if depth not available
|
| 860 |
if (
|
| 861 |
points3d is not None
|
| 862 |
and 0 <= p[1] < points3d.shape[0]
|
| 863 |
and 0 <= p[0] < points3d.shape[1]
|
| 864 |
):
|
| 865 |
z = points3d[p[1], p[0], 2]
|
| 866 |
+
depth_text += f"- **P{i + 1} Z-coord: {z:.2f}m.**\n"
|
| 867 |
except Exception as e:
|
| 868 |
+
print(f"Depth text error: {e}")
|
| 869 |
+
depth_text = f"Error computing depth: {e}\n"
|
| 870 |
|
| 871 |
if len(measure_points) == 2:
|
| 872 |
try:
|
| 873 |
point1, point2 = measure_points
|
| 874 |
+
# Draw line
|
| 875 |
if (
|
| 876 |
0 <= point1[0] < image.shape[1]
|
| 877 |
and 0 <= point1[1] < image.shape[0]
|
|
|
|
| 882 |
image, point1, point2, color=(255, 0, 0), thickness=2
|
| 883 |
)
|
| 884 |
|
| 885 |
+
# Compute 3D distance
|
| 886 |
+
distance_text = "- **Distance: Unable to compute**"
|
| 887 |
if (
|
| 888 |
points3d is not None
|
| 889 |
and 0 <= point1[1] < points3d.shape[0]
|
|
|
|
| 895 |
p1_3d = points3d[point1[1], point1[0]]
|
| 896 |
p2_3d = points3d[point2[1], point2[0]]
|
| 897 |
distance = np.linalg.norm(p1_3d - p2_3d)
|
| 898 |
+
distance_text = f"- **Distance: {distance:.2f}m**"
|
| 899 |
except Exception as e:
|
| 900 |
+
print(f"Distance computation error: {e}")
|
| 901 |
+
distance_text = f"- **Distance computation error: {e}**"
|
| 902 |
|
| 903 |
measure_points = []
|
| 904 |
text = depth_text + distance_text
|
| 905 |
+
print(f"Measurement complete: {text}")
|
| 906 |
return [image, measure_points, text]
|
| 907 |
except Exception as e:
|
| 908 |
+
print(f"Final measurement error: {e}")
|
| 909 |
+
return None, [], f"Measurement error: {e}"
|
| 910 |
else:
|
| 911 |
+
print(f"Single point measurement: {depth_text}")
|
| 912 |
return [image, measure_points, depth_text]
|
| 913 |
|
| 914 |
except Exception as e:
|
| 915 |
+
print(f"Overall measure function error: {e}")
|
| 916 |
+
return None, [], f"Measure function error: {e}"
|
| 917 |
|
| 918 |
|
| 919 |
def clear_fields():
|
| 920 |
+
"""
|
| 921 |
+
Clears the 3D viewer, the stored target_dir, and empties the gallery.
|
| 922 |
+
"""
|
| 923 |
+
return None
|
| 924 |
|
| 925 |
|
| 926 |
def update_log():
|
| 927 |
+
"""
|
| 928 |
+
Display a quick log message while waiting.
|
| 929 |
+
"""
|
| 930 |
+
return "加载和重建中..."
|
| 931 |
|
| 932 |
|
| 933 |
def update_visualization(
|
|
|
|
| 939 |
filter_white_bg=False,
|
| 940 |
show_mesh=True,
|
| 941 |
):
|
| 942 |
+
"""
|
| 943 |
+
Reload saved predictions from npz, create (or reuse) the GLB for new parameters,
|
| 944 |
+
and return it for the 3D viewer. If is_example == "True", skip.
|
| 945 |
+
"""
|
| 946 |
+
|
| 947 |
+
# If it's an example click, skip as requested
|
| 948 |
if is_example == "True":
|
| 949 |
+
return (
|
| 950 |
+
gr.update(),
|
| 951 |
+
"没有可用的重建。请先点击重建按钮。",
|
| 952 |
+
)
|
| 953 |
|
| 954 |
if not target_dir or target_dir == "None" or not os.path.isdir(target_dir):
|
| 955 |
+
return (
|
| 956 |
+
gr.update(),
|
| 957 |
+
"没有可用的重建。请先点击重建按钮。",
|
| 958 |
+
)
|
| 959 |
|
| 960 |
predictions_path = os.path.join(target_dir, "predictions.npz")
|
| 961 |
if not os.path.exists(predictions_path):
|
| 962 |
+
return (
|
| 963 |
+
gr.update(),
|
| 964 |
+
f"No reconstruction available at {predictions_path}. Please run 'Reconstruct' first.",
|
| 965 |
+
)
|
| 966 |
|
| 967 |
loaded = np.load(predictions_path, allow_pickle=True)
|
| 968 |
predictions = {key: loaded[key] for key in loaded.keys()}
|
|
|
|
| 972 |
f"glbscene_{frame_filter.replace('.', '_').replace(':', '').replace(' ', '_')}_cam{show_cam}_mesh{show_mesh}_black{filter_black_bg}_white{filter_white_bg}.glb",
|
| 973 |
)
|
| 974 |
|
| 975 |
+
if not os.path.exists(glbfile):
|
| 976 |
+
glbscene = predictions_to_glb(
|
| 977 |
+
predictions,
|
| 978 |
+
filter_by_frames=frame_filter,
|
| 979 |
+
show_cam=show_cam,
|
| 980 |
+
mask_black_bg=filter_black_bg,
|
| 981 |
+
mask_white_bg=filter_white_bg,
|
| 982 |
+
as_mesh=show_mesh,
|
| 983 |
+
)
|
| 984 |
+
glbscene.export(file_obj=glbfile)
|
| 985 |
|
| 986 |
+
return (
|
| 987 |
+
glbfile,
|
| 988 |
+
"可视化已更新",
|
| 989 |
+
)
|
| 990 |
|
| 991 |
|
| 992 |
def update_all_views_on_filter_change(
|
|
|
|
| 998 |
normal_view_selector,
|
| 999 |
measure_view_selector,
|
| 1000 |
):
|
| 1001 |
+
"""
|
| 1002 |
+
Update all individual view tabs when background filtering checkboxes change.
|
| 1003 |
+
This regenerates the processed data with new filtering and updates all views.
|
| 1004 |
+
"""
|
| 1005 |
+
# Check if we have a valid target directory and predictions
|
| 1006 |
if not target_dir or target_dir == "None" or not os.path.isdir(target_dir):
|
| 1007 |
return processed_data, None, None, None, []
|
| 1008 |
|
|
|
|
| 1011 |
return processed_data, None, None, None, []
|
| 1012 |
|
| 1013 |
try:
|
| 1014 |
+
# Load the original predictions and views
|
| 1015 |
loaded = np.load(predictions_path, allow_pickle=True)
|
| 1016 |
predictions = {key: loaded[key] for key in loaded.keys()}
|
| 1017 |
|
| 1018 |
+
# Load images using MapAnything's load_images function
|
| 1019 |
image_folder_path = os.path.join(target_dir, "images")
|
| 1020 |
views = load_images(image_folder_path)
|
| 1021 |
|
| 1022 |
+
# Regenerate processed data with new filtering settings
|
| 1023 |
new_processed_data = process_predictions_for_visualization(
|
| 1024 |
predictions, views, high_level_config, filter_black_bg, filter_white_bg
|
| 1025 |
)
|
| 1026 |
|
| 1027 |
+
# Get current view indices
|
| 1028 |
try:
|
| 1029 |
depth_view_idx = (
|
| 1030 |
int(depth_view_selector.split()[1]) - 1 if depth_view_selector else 0
|
|
|
|
| 1048 |
except:
|
| 1049 |
measure_view_idx = 0
|
| 1050 |
|
| 1051 |
+
# Update all views with new filtered data
|
| 1052 |
depth_vis = update_depth_view(new_processed_data, depth_view_idx)
|
| 1053 |
normal_vis = update_normal_view(new_processed_data, normal_view_idx)
|
| 1054 |
measure_img, _ = update_measure_view(new_processed_data, measure_view_idx)
|
|
|
|
| 1060 |
return processed_data, None, None, None, []
|
| 1061 |
|
| 1062 |
|
| 1063 |
+
# -------------------------------------------------------------------------
|
| 1064 |
+
# Example scene functions
|
| 1065 |
+
# -------------------------------------------------------------------------
|
|
|
|
| 1066 |
def get_scene_info(examples_dir):
|
| 1067 |
"""Get information about scenes in the examples directory"""
|
| 1068 |
import glob
|
|
|
|
| 1074 |
for scene_folder in sorted(os.listdir(examples_dir)):
|
| 1075 |
scene_path = os.path.join(examples_dir, scene_folder)
|
| 1076 |
if os.path.isdir(scene_path):
|
| 1077 |
+
# Find all image files in the scene folder
|
| 1078 |
image_extensions = ["*.jpg", "*.jpeg", "*.png", "*.bmp", "*.tiff", "*.tif"]
|
| 1079 |
image_files = []
|
| 1080 |
for ext in image_extensions:
|
|
|
|
| 1082 |
image_files.extend(glob.glob(os.path.join(scene_path, ext.upper())))
|
| 1083 |
|
| 1084 |
if image_files:
|
| 1085 |
+
# Sort images and get the first one for thumbnail
|
| 1086 |
image_files = sorted(image_files)
|
| 1087 |
first_image = image_files[0]
|
| 1088 |
num_images = len(image_files)
|
|
|
|
| 1101 |
|
| 1102 |
|
| 1103 |
def load_example_scene(scene_name, examples_dir="examples"):
|
| 1104 |
+
"""Load a scene from examples directory"""
|
| 1105 |
scenes = get_scene_info(examples_dir)
|
| 1106 |
|
| 1107 |
+
# Find the selected scene
|
| 1108 |
selected_scene = None
|
| 1109 |
for scene in scenes:
|
| 1110 |
if scene["name"] == scene_name:
|
|
|
|
| 1112 |
break
|
| 1113 |
|
| 1114 |
if selected_scene is None:
|
| 1115 |
+
return None, None, None, "Scene not found"
|
| 1116 |
|
| 1117 |
+
# Create file-like objects for the unified upload system
|
| 1118 |
+
# Convert image file paths to the format expected by unified_upload
|
| 1119 |
file_objects = []
|
| 1120 |
for image_path in selected_scene["image_files"]:
|
| 1121 |
file_objects.append(image_path)
|
| 1122 |
|
| 1123 |
+
# Create target directory and copy images using the unified upload system
|
| 1124 |
target_dir, image_paths = handle_uploads(file_objects, 1.0)
|
| 1125 |
|
| 1126 |
return (
|
| 1127 |
+
None, # Clear reconstruction output
|
| 1128 |
+
target_dir, # Set target directory
|
| 1129 |
+
image_paths, # Set gallery
|
| 1130 |
+
f"已加载场景 '{scene_name}'({selected_scene['num_images']} 张图片)。点击「开始重建」进行3D处理。",
|
| 1131 |
)
|
| 1132 |
|
| 1133 |
|
| 1134 |
+
# -------------------------------------------------------------------------
|
| 1135 |
+
# 6) Build Gradio UI
|
| 1136 |
+
# -------------------------------------------------------------------------
|
|
|
|
| 1137 |
theme = get_gradio_theme()
|
| 1138 |
|
| 1139 |
# 自定义CSS防止UI抖动
|
|
|
|
| 1196 |
}
|
| 1197 |
"""
|
| 1198 |
|
| 1199 |
+
with gr.Blocks(theme=theme, css=CUSTOM_CSS, title="MapAnything - 3D重建系统") as demo:
|
| 1200 |
+
# State variables for the tabbed interface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1201 |
is_example = gr.Textbox(label="is_example", visible=False, value="None")
|
| 1202 |
+
num_images = gr.Textbox(label="num_images", visible=False, value="None")
|
| 1203 |
processed_data_state = gr.State(value=None)
|
| 1204 |
measure_points_state = gr.State(value=[])
|
| 1205 |
+
current_view_index = gr.State(value=0) # Track current view index for navigation
|
| 1206 |
|
| 1207 |
# 添加粘贴板支持的 JavaScript
|
| 1208 |
+
PASTE_JS = """
|
| 1209 |
+
<script>
|
| 1210 |
+
// 添加粘贴板支持
|
| 1211 |
+
document.addEventListener('paste', function(e) {
|
| 1212 |
+
const items = e.clipboardData.items;
|
| 1213 |
+
for (let i = 0; i < items.length; i++) {
|
| 1214 |
+
if (items[i].type.indexOf('image') !== -1) {
|
| 1215 |
+
const blob = items[i].getAsFile();
|
| 1216 |
+
const fileInput = document.querySelector('input[type="file"][multiple]');
|
| 1217 |
+
if (fileInput) {
|
| 1218 |
+
const dataTransfer = new DataTransfer();
|
| 1219 |
+
dataTransfer.items.add(blob);
|
| 1220 |
+
fileInput.files = dataTransfer.files;
|
| 1221 |
+
fileInput.dispatchEvent(new Event('change', { bubbles: true }));
|
| 1222 |
+
console.log('✅ 图片已从剪贴板粘贴');
|
| 1223 |
+
}
|
| 1224 |
+
}
|
| 1225 |
+
}
|
| 1226 |
+
});
|
| 1227 |
+
console.log('💡 粘贴板功能已启用:使用 Ctrl+V 可直接粘贴截图');
|
| 1228 |
+
</script>
|
| 1229 |
+
"""
|
| 1230 |
gr.HTML(PASTE_JS)
|
| 1231 |
+
|
| 1232 |
+
# 美化的顶部标题
|
| 1233 |
gr.HTML("""
|
| 1234 |
<div style="text-align: center; margin: 20px 0;">
|
| 1235 |
+
<h2 style="color: #1976D2; margin-bottom: 10px;">MapAnything - 3D重建系统</h2>
|
| 1236 |
+
<p style="color: #666; font-size: 16px;">多视图3D重建 | 深度估计 | 法线计算 | 距离测量</p>
|
| 1237 |
</div>
|
| 1238 |
""")
|
| 1239 |
|
|
|
|
| 1306 |
clear_color=[0.0, 0.0, 0.0, 0.0]
|
| 1307 |
)
|
| 1308 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1309 |
with gr.Tab("📊 深度图"):
|
| 1310 |
with gr.Row(elem_classes=["navigation-row"]):
|
| 1311 |
prev_depth_btn = gr.Button("◀", size="sm", scale=1)
|
|
|
|
| 1356 |
max_lines=1
|
| 1357 |
)
|
| 1358 |
|
| 1359 |
+
# 高级选项(默认折叠)
|
| 1360 |
+
with gr.Accordion("⚙️ 高级选项", open=False):
|
| 1361 |
with gr.Row(equal_height=False):
|
| 1362 |
with gr.Column(scale=1, min_width=300):
|
| 1363 |
gr.Markdown("#### 可视化参数")
|
|
|
|
| 1374 |
apply_mask_checkbox = gr.Checkbox(
|
| 1375 |
label="应用深度掩码", value=True
|
| 1376 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1377 |
# 示例场景(可折叠)
|
| 1378 |
with gr.Accordion("🖼️ 示例场景", open=False):
|
| 1379 |
+
gr.Markdown("点击缩略图加载场景进行重建")
|
| 1380 |
scenes = get_scene_info("examples")
|
| 1381 |
+
|
| 1382 |
if scenes:
|
| 1383 |
+
for i in range(0, len(scenes), 4): # Process 4 scenes per row
|
| 1384 |
with gr.Row(equal_height=True):
|
| 1385 |
for j in range(4):
|
| 1386 |
scene_idx = i + j
|
|
|
|
| 1388 |
scene = scenes[scene_idx]
|
| 1389 |
with gr.Column(scale=1, min_width=150):
|
| 1390 |
scene_img = gr.Image(
|
| 1391 |
+
value=scene["thumbnail"],
|
| 1392 |
height=150,
|
| 1393 |
+
interactive=False,
|
| 1394 |
+
show_label=False,
|
| 1395 |
sources=[],
|
| 1396 |
container=False
|
| 1397 |
)
|
|
|
|
| 1403 |
fn=lambda name=scene["name"]: load_example_scene(name),
|
| 1404 |
outputs=[
|
| 1405 |
reconstruction_output,
|
| 1406 |
+
target_dir_output,
|
| 1407 |
+
image_gallery,
|
| 1408 |
+
log_output,
|
| 1409 |
+
],
|
| 1410 |
)
|
| 1411 |
|
| 1412 |
# === 事件绑定 ===
|
| 1413 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1414 |
# 上传文件自动更新
|
| 1415 |
def update_gallery_on_unified_upload(files, interval):
|
| 1416 |
if not files:
|
|
|
|
| 1540 |
# 重建按钮
|
| 1541 |
submit_btn.click(
|
| 1542 |
fn=clear_fields,
|
| 1543 |
+
outputs=[reconstruction_output]
|
| 1544 |
).then(
|
| 1545 |
fn=update_log,
|
| 1546 |
outputs=[log_output]
|
|
|
|
| 1549 |
inputs=[
|
| 1550 |
target_dir_output, frame_filter, show_cam,
|
| 1551 |
filter_black_bg, filter_white_bg,
|
| 1552 |
+
apply_mask_checkbox, show_mesh
|
|
|
|
| 1553 |
],
|
| 1554 |
outputs=[
|
| 1555 |
+
reconstruction_output, log_output, frame_filter,
|
| 1556 |
processed_data_state, depth_map, normal_map, measure_image,
|
| 1557 |
measure_text, depth_view_selector, normal_view_selector, measure_view_selector
|
| 1558 |
]
|
|
|
|
| 1562 |
)
|
| 1563 |
|
| 1564 |
# 清空按钮
|
| 1565 |
+
clear_btn.add([reconstruction_output, log_output])
|
| 1566 |
+
|
| 1567 |
# 可视化参数实时更新
|
| 1568 |
for component in [frame_filter, show_cam, show_mesh]:
|
| 1569 |
component.change(
|
|
|
|
| 1585 |
],
|
| 1586 |
outputs=[processed_data_state, depth_map, normal_map, measure_image, measure_points_state]
|
| 1587 |
)
|
| 1588 |
+
|
| 1589 |
# 深度图导航
|
| 1590 |
prev_depth_btn.click(
|
| 1591 |
fn=lambda pd, cs: navigate_depth_view(pd, cs, -1),
|
|
|
|
| 1642 |
outputs=[measure_image, measure_points_state]
|
| 1643 |
)
|
| 1644 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1645 |
demo.queue(max_size=20).launch(show_error=True, share=True, ssr_mode=False)
|