Corin1998 commited on
Commit
4b92cf5
·
verified ·
1 Parent(s): cfb38df

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +84 -63
app.py CHANGED
@@ -2,9 +2,9 @@ import os
2
  import io
3
  import json
4
  import hashlib
5
- import gradio
6
  import gradio as gr
7
- from typing import Tuple, List, Union
8
 
9
  from pipelines.openai_ingest import (
10
  extract_text_with_openai,
@@ -14,60 +14,82 @@ from pipelines.openai_ingest import (
14
  from pipelines.parsing import normalize_resume
15
  from pipelines.merge import merge_normalized_records
16
  from pipelines.skills import extract_skills
17
- from pipelines.anonymize import anonymize_text, render_anonymized_pdf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
  from pipelines.scoring import compute_quality_score
19
  from pipelines.storage import persist_to_hf
20
  from pipelines.utils import detect_filetype, load_doc_text
21
 
22
  APP_TITLE = "候補者インテーク & レジュメ標準化(OpenAI版)"
23
 
24
- # ---- helpers ---------------------------------------------------------------
25
-
26
- def _read_file_input(item: Union[str, "gradio.files.TempFile"]) -> Tuple[bytes, str]:
27
- """
28
- Gradio v4.44 の Files(type='filepath') は str パスを返す。
29
- 互換のため、パス/ファイルライク双方を許容して (bytes, filename) を返す。
30
- """
31
- if isinstance(item, str):
32
- with open(item, "rb") as rf:
33
- data = rf.read()
34
- name = os.path.basename(item)
35
- return data, name
36
- # UploadedFile 等(念のため)
37
- if hasattr(item, "read"):
38
- data = item.read()
39
- name = getattr(item, "name", "uploaded")
40
- return data, os.path.basename(name)
41
- raise ValueError("Unsupported file input type")
42
-
43
 
44
- def _as_json_code(obj) -> str:
45
- return json.dumps(obj, ensure_ascii=False, indent=2)
 
46
 
47
 
48
- # ---- core pipeline ---------------------------------------------------------
49
-
50
- def process_resumes(files: List[Union[str, "gradio.files.TempFile"]], candidate_id: str, additional_notes: str = ""):
 
51
  if not files:
52
  raise gr.Error("少なくとも1ファイルをアップロードしてください。")
53
 
54
  partial_records = []
55
  raw_texts = []
56
 
57
- for f in files:
58
- raw_bytes, fname = _read_file_input(f)
59
- filetype = detect_filetype(fname, raw_bytes)
 
60
 
61
  # 1) テキスト抽出:画像/PDFはOpenAI Vision OCR、docx/txtは生文面+OpenAI整形
62
  if filetype in {"pdf", "image"}:
63
- text = extract_text_with_openai(raw_bytes, filename=fname, filetype=filetype)
64
  else:
65
  base_text = load_doc_text(filetype, raw_bytes)
66
- text = extract_text_with_openai(base_text.encode("utf-8"), filename=fname, filetype="txt")
67
 
68
- raw_texts.append({"filename": fname, "text": text})
69
 
70
- # 2) OpenAIでセクション構造化 → ルール整形
71
  structured = structure_with_openai(text)
72
  normalized = normalize_resume({
73
  "work_experience": structured.get("work_experience_raw", ""),
@@ -76,16 +98,16 @@ def process_resumes(files: List[Union[str, "gradio.files.TempFile"]], candidate_
76
  "skills": ", ".join(structured.get("skills_list", [])),
77
  })
78
  partial_records.append({
79
- "source": fname,
80
  "text": text,
81
  "structured": structured,
82
  "normalized": normalized,
83
  })
84
 
85
- # 3) 統合
86
  merged = merge_normalized_records([r["normalized"] for r in partial_records])
87
 
88
- # 4) スキル抽出
89
  merged_text = "\n\n".join([r["text"] for r in partial_records])
90
  skills = extract_skills(merged_text, {
91
  "work_experience": merged.get("raw_sections", {}).get("work_experience", ""),
@@ -101,13 +123,14 @@ def process_resumes(files: List[Union[str, "gradio.files.TempFile"]], candidate_
101
  # 6) 品質スコア
102
  score = compute_quality_score(merged_text, merged)
103
 
104
- # 7) 要約
105
  summaries = summarize_with_openai(merged_text)
106
 
107
  # 8) 構造化出力
 
108
  result_json = {
109
- "candidate_id": candidate_id or hashlib.sha256(merged_text.encode("utf-8")).hexdigest()[:16],
110
- "files": [os.path.basename(_read_file_input(f)[1]) if isinstance(f, str) else getattr(f, "name", "uploaded") for f in files],
111
  "merged": merged,
112
  "skills": skills,
113
  "quality_score": score,
@@ -116,38 +139,39 @@ def process_resumes(files: List[Union[str, "gradio.files.TempFile"]], candidate_
116
  "notes": additional_notes,
117
  }
118
 
119
- # 9) HF Datasets 保存
120
  dataset_repo = os.environ.get("DATASET_REPO")
121
  commit_info = None
122
  if dataset_repo:
123
- file_hash = result_json["candidate_id"]
124
  commit_info = persist_to_hf(
125
  dataset_repo=dataset_repo,
126
  record=result_json,
127
  anon_pdf_bytes=anon_pdf_bytes,
128
- parquet_path=f"candidates/{file_hash}.parquet",
129
- json_path=f"candidates/{file_hash}.json",
130
- pdf_path=f"candidates/{file_hash}.anon.pdf",
131
  )
132
 
133
- anon_pdf = (result_json["candidate_id"] + ".anon.pdf", anon_pdf_bytes)
 
 
 
 
 
134
 
135
- # 返却はすべて文字列 or ファイル
136
  return (
137
- _as_json_code(result_json),
138
- _as_json_code(skills),
139
- _as_json_code(score),
140
  summaries.get("300chars", ""),
141
  summaries.get("100chars", ""),
142
  summaries.get("onesent", ""),
143
  anon_pdf,
144
- _as_json_code(commit_info or {"status": "skipped (DATASET_REPO not set)"}),
145
  )
146
 
147
 
148
- # ---- UI --------------------------------------------------------------------
149
-
150
- with gr.Blocks(title=APP_TITLE, analytics_enabled=False) as demo:
151
  gr.Markdown(f"# {APP_TITLE}\n複数ファイルを統合→OpenAIで読み込み/構造化/要約→匿名化→Datasets保存")
152
 
153
  with gr.Row():
@@ -155,7 +179,7 @@ with gr.Blocks(title=APP_TITLE, analytics_enabled=False) as demo:
155
  label="レジュメ類 (PDF/画像/Word/テキスト) 複数可",
156
  file_count="multiple",
157
  file_types=[".pdf", ".png", ".jpg", ".jpeg", ".tiff", ".bmp", ".docx", ".txt"],
158
- type="filepath", # 重要: 'file' はNG
159
  )
160
  candidate_id = gr.Textbox(label="候補者ID(任意。未入力なら自動生成)")
161
  notes = gr.Textbox(label="補足メモ(任意)", lines=3)
@@ -166,8 +190,7 @@ with gr.Blocks(title=APP_TITLE, analytics_enabled=False) as demo:
166
  out_json = gr.Code(label="統合出力 (JSON)")
167
 
168
  with gr.Tab("抽出スキル"):
169
- # gr.JSON 4.44 でスキーマ事故発生 Code に置換
170
- out_skills = gr.Code(label="スキル一覧 (JSON)")
171
 
172
  with gr.Tab("品質スコア"):
173
  out_score = gr.Code(label="品質評価 (JSON)")
@@ -184,14 +207,12 @@ with gr.Blocks(title=APP_TITLE, analytics_enabled=False) as demo:
184
  out_commit = gr.Code(label="コミット情報 (JSON)")
185
 
186
  run_btn.click(
187
- process_resumes,
188
  inputs=[in_files, candidate_id, notes],
189
  outputs=[out_json, out_skills, out_score, out_sum_300, out_sum_100, out_sum_1, out_pdf, out_commit],
 
190
  )
191
 
192
-
193
  if __name__ == "__main__":
194
- # ローカル不可な環境では share=True を強制(環境変数で上書き可)
195
- share_env = os.environ.get("GRADIO_SHARE", "true").lower()
196
- share_flag = share_env in ("1", "true", "yes", "on")
197
- demo.launch(server_name="0.0.0.0", server_port=7860, share=share_flag)
 
2
  import io
3
  import json
4
  import hashlib
5
+ import gradio # 前方参照の解決用(必要なら)
6
  import gradio as gr
7
+ from typing import Any, List
8
 
9
  from pipelines.openai_ingest import (
10
  extract_text_with_openai,
 
14
  from pipelines.parsing import normalize_resume
15
  from pipelines.merge import merge_normalized_records
16
  from pipelines.skills import extract_skills
17
+
18
+ # ---- anonymize フォールバック(pipelines/anonymize.py が未実装でも動く) ----
19
+ try:
20
+ from pipelines.anonymize import anonymize_text, render_anonymized_pdf # type: ignore
21
+ except Exception:
22
+ import re
23
+ try:
24
+ from reportlab.pdfgen import canvas
25
+ from reportlab.lib.pagesizes import A4
26
+ except Exception:
27
+ canvas = None
28
+ A4 = None
29
+
30
+ def anonymize_text(text: str):
31
+ # 超簡易:メール/電話っぽい所をマスク。氏名は見出し候補を雑にマスク。
32
+ masked = re.sub(r"([A-Za-z0-9._%+-]+)@([A-Za-z0-9.-]+\.[A-Za-z]{2,})", r"***@\2", text)
33
+ masked = re.sub(r"(?:\+?\d{1,3}[ -]?)?(?:\(\d{2,4}\)[ -]?)?\d{2,4}[ -]?\d{2,4}[ -]?\d{3,4}", "***-****-****", masked)
34
+ masked = re.sub(r"(氏名[::]?\s*)(\S+)", r"\1***", masked)
35
+ return masked, {"fallback": True}
36
+
37
+ def render_anonymized_pdf(text: str) -> bytes:
38
+ if canvas is None:
39
+ # reportlab が無ければテキストファイルで代替(UIは .pdf 名で返す)
40
+ return text.encode("utf-8")
41
+ buf = io.BytesIO()
42
+ c = canvas.Canvas(buf, pagesize=A4)
43
+ width, height = A4
44
+ margin = 40
45
+ y = height - margin
46
+ for line in text.splitlines() or ["(no content)"]:
47
+ if y < margin:
48
+ c.showPage()
49
+ y = height - margin
50
+ c.drawString(margin, y, line[:95])
51
+ y -= 14
52
+ c.save()
53
+ return buf.getvalue()
54
+ # ---------------------------------------------------------------------------
55
+
56
  from pipelines.scoring import compute_quality_score
57
  from pipelines.storage import persist_to_hf
58
  from pipelines.utils import detect_filetype, load_doc_text
59
 
60
  APP_TITLE = "候補者インテーク & レジュメ標準化(OpenAI版)"
61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
63
+ def _read_bytes_from_path(path: str) -> bytes:
64
+ with open(path, "rb") as f:
65
+ return f.read()
66
 
67
 
68
+ def process_resumes(files: List[str], candidate_id: str = "", additional_notes: str = ""):
69
+ """
70
+ files: gr.Files(type='filepath') から渡るファイルパスのリスト
71
+ """
72
  if not files:
73
  raise gr.Error("少なくとも1ファイルをアップロードしてください。")
74
 
75
  partial_records = []
76
  raw_texts = []
77
 
78
+ for path in files:
79
+ filename = os.path.basename(path)
80
+ raw_bytes = _read_bytes_from_path(path)
81
+ filetype = detect_filetype(filename, raw_bytes)
82
 
83
  # 1) テキスト抽出:画像/PDFはOpenAI Vision OCR、docx/txtは生文面+OpenAI整形
84
  if filetype in {"pdf", "image"}:
85
+ text = extract_text_with_openai(raw_bytes, filename=filename, filetype=filetype)
86
  else:
87
  base_text = load_doc_text(filetype, raw_bytes)
88
+ text = extract_text_with_openai(base_text.encode("utf-8"), filename=filename, filetype="txt")
89
 
90
+ raw_texts.append({"filename": filename, "text": text})
91
 
92
+ # 2) OpenAIでセクション構造化 → ルール正規化
93
  structured = structure_with_openai(text)
94
  normalized = normalize_resume({
95
  "work_experience": structured.get("work_experience_raw", ""),
 
98
  "skills": ", ".join(structured.get("skills_list", [])),
99
  })
100
  partial_records.append({
101
+ "source": filename,
102
  "text": text,
103
  "structured": structured,
104
  "normalized": normalized,
105
  })
106
 
107
+ # 3) 統合(複数ファイル→1候補者)
108
  merged = merge_normalized_records([r["normalized"] for r in partial_records])
109
 
110
+ # 4) スキル抽出(辞書/正規表現)
111
  merged_text = "\n\n".join([r["text"] for r in partial_records])
112
  skills = extract_skills(merged_text, {
113
  "work_experience": merged.get("raw_sections", {}).get("work_experience", ""),
 
123
  # 6) 品質スコア
124
  score = compute_quality_score(merged_text, merged)
125
 
126
+ # 7) 要約(300/100/1文)
127
  summaries = summarize_with_openai(merged_text)
128
 
129
  # 8) 構造化出力
130
+ cid = candidate_id or hashlib.sha256(merged_text.encode("utf-8")).hexdigest()[:16]
131
  result_json = {
132
+ "candidate_id": cid,
133
+ "files": [os.path.basename(p) for p in files],
134
  "merged": merged,
135
  "skills": skills,
136
  "quality_score": score,
 
139
  "notes": additional_notes,
140
  }
141
 
142
+ # 9) HF Datasets 保存(任意)
143
  dataset_repo = os.environ.get("DATASET_REPO")
144
  commit_info = None
145
  if dataset_repo:
 
146
  commit_info = persist_to_hf(
147
  dataset_repo=dataset_repo,
148
  record=result_json,
149
  anon_pdf_bytes=anon_pdf_bytes,
150
+ parquet_path=f"candidates/{cid}.parquet",
151
+ json_path=f"candidates/{cid}.json",
152
+ pdf_path=f"candidates/{cid}.anon.pdf",
153
  )
154
 
155
+ # UI 向け出力を整形
156
+ anon_pdf = (f"{cid}.anon.pdf", anon_pdf_bytes)
157
+ out_json_str = json.dumps(result_json, ensure_ascii=False, indent=2)
158
+ out_skills_str = json.dumps(skills, ensure_ascii=False, indent=2) # gr.Code で表示
159
+ out_score_str = json.dumps(score, ensure_ascii=False, indent=2)
160
+ out_commit_str = json.dumps(commit_info or {"status": "skipped (DATASET_REPO not set)"}, ensure_ascii=False, indent=2)
161
 
 
162
  return (
163
+ out_json_str,
164
+ out_skills_str,
165
+ out_score_str,
166
  summaries.get("300chars", ""),
167
  summaries.get("100chars", ""),
168
  summaries.get("onesent", ""),
169
  anon_pdf,
170
+ out_commit_str,
171
  )
172
 
173
 
174
+ with gr.Blocks(title=APP_TITLE) as demo:
 
 
175
  gr.Markdown(f"# {APP_TITLE}\n複数ファイルを統合→OpenAIで読み込み/構造化/要約→匿名化→Datasets保存")
176
 
177
  with gr.Row():
 
179
  label="レジュメ類 (PDF/画像/Word/テキスト) 複数可",
180
  file_count="multiple",
181
  file_types=[".pdf", ".png", ".jpg", ".jpeg", ".tiff", ".bmp", ".docx", ".txt"],
182
+ type="filepath", # 重要:'file' ではなく 'filepath'
183
  )
184
  candidate_id = gr.Textbox(label="候補者ID(任意。未入力なら自動生成)")
185
  notes = gr.Textbox(label="補足メモ(任意)", lines=3)
 
190
  out_json = gr.Code(label="統合出力 (JSON)")
191
 
192
  with gr.Tab("抽出スキル"):
193
+ out_skills = gr.Code(label="スキル一覧 (JSON)") # JSON -> Code に���更
 
194
 
195
  with gr.Tab("品質スコア"):
196
  out_score = gr.Code(label="品質評価 (JSON)")
 
207
  out_commit = gr.Code(label="コミット情報 (JSON)")
208
 
209
  run_btn.click(
210
+ fn=process_resumes,
211
  inputs=[in_files, candidate_id, notes],
212
  outputs=[out_json, out_skills, out_score, out_sum_300, out_sum_100, out_sum_1, out_pdf, out_commit],
213
+ api_name="run",
214
  )
215
 
 
216
  if __name__ == "__main__":
217
+ # 環境により localhost へ到達できない場合があるため share=True を既定に
218
+ demo.launch(server_name="0.0.0.0", server_port=7860, share=True)