Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
import os
|
|
|
|
| 2 |
import json
|
| 3 |
import hashlib
|
| 4 |
import gradio as gr
|
|
@@ -26,25 +27,23 @@ def process_resumes(files, candidate_id: str, additional_notes: str = ""):
|
|
| 26 |
partial_records = []
|
| 27 |
raw_texts = []
|
| 28 |
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
with open(p, "rb") as fh:
|
| 33 |
-
raw_bytes = fh.read()
|
| 34 |
-
|
| 35 |
-
filetype = detect_filetype(fname, raw_bytes)
|
| 36 |
|
| 37 |
# 1) テキスト抽出:画像/PDFはOpenAI Vision OCR、docx/txtは生文面+OpenAI整形
|
| 38 |
if filetype in {"pdf", "image"}:
|
| 39 |
-
text = extract_text_with_openai(raw_bytes, filename=
|
| 40 |
else:
|
| 41 |
base_text = load_doc_text(filetype, raw_bytes)
|
| 42 |
-
|
|
|
|
| 43 |
|
| 44 |
-
raw_texts.append({"filename":
|
| 45 |
|
| 46 |
-
# 2) OpenAIでセクション構造化
|
| 47 |
structured = structure_with_openai(text)
|
|
|
|
| 48 |
normalized = normalize_resume({
|
| 49 |
"work_experience": structured.get("work_experience_raw", ""),
|
| 50 |
"education": structured.get("education_raw", ""),
|
|
@@ -52,7 +51,7 @@ def process_resumes(files, candidate_id: str, additional_notes: str = ""):
|
|
| 52 |
"skills": ", ".join(structured.get("skills_list", [])),
|
| 53 |
})
|
| 54 |
partial_records.append({
|
| 55 |
-
"source":
|
| 56 |
"text": text,
|
| 57 |
"structured": structured,
|
| 58 |
"normalized": normalized,
|
|
@@ -83,7 +82,7 @@ def process_resumes(files, candidate_id: str, additional_notes: str = ""):
|
|
| 83 |
# 8) 構造化出力
|
| 84 |
result_json = {
|
| 85 |
"candidate_id": candidate_id or hashlib.sha256(merged_text.encode("utf-8")).hexdigest()[:16],
|
| 86 |
-
"files": [
|
| 87 |
"merged": merged,
|
| 88 |
"skills": skills,
|
| 89 |
"quality_score": score,
|
|
@@ -108,14 +107,13 @@ def process_resumes(files, candidate_id: str, additional_notes: str = ""):
|
|
| 108 |
|
| 109 |
anon_pdf = (result_json["candidate_id"] + ".anon.pdf", anon_pdf_bytes)
|
| 110 |
|
| 111 |
-
# dict を gr.Code で安全表示するため、文字列化して返す
|
| 112 |
return (
|
| 113 |
-
json.dumps(result_json, ensure_ascii=False, indent=2),
|
| 114 |
-
json.dumps(skills, ensure_ascii=False, indent=2),
|
| 115 |
-
json.dumps(score, ensure_ascii=False, indent=2),
|
| 116 |
-
summaries
|
| 117 |
-
summaries
|
| 118 |
-
summaries
|
| 119 |
anon_pdf,
|
| 120 |
json.dumps(commit_info or {"status": "skipped (DATASET_REPO not set)"}, ensure_ascii=False, indent=2),
|
| 121 |
)
|
|
@@ -129,7 +127,7 @@ with gr.Blocks(title=APP_TITLE) as demo:
|
|
| 129 |
label="レジュメ類 (PDF/画像/Word/テキスト) 複数可",
|
| 130 |
file_count="multiple",
|
| 131 |
file_types=[".pdf", ".png", ".jpg", ".jpeg", ".tiff", ".bmp", ".docx", ".txt"],
|
| 132 |
-
type="
|
| 133 |
)
|
| 134 |
candidate_id = gr.Textbox(label="候補者ID(任意。未入力なら自動生成)")
|
| 135 |
notes = gr.Textbox(label="補足メモ(任意)", lines=3)
|
|
@@ -140,10 +138,11 @@ with gr.Blocks(title=APP_TITLE) as demo:
|
|
| 140 |
out_json = gr.Code(label="統合出力 (JSON)")
|
| 141 |
|
| 142 |
with gr.Tab("抽出スキル"):
|
| 143 |
-
|
|
|
|
| 144 |
|
| 145 |
with gr.Tab("品質スコア"):
|
| 146 |
-
out_score = gr.Code(label="品質評価
|
| 147 |
|
| 148 |
with gr.Tab("要約 (300/100/1文)"):
|
| 149 |
out_sum_300 = gr.Textbox(label="300字要約")
|
|
@@ -164,4 +163,5 @@ with gr.Blocks(title=APP_TITLE) as demo:
|
|
| 164 |
|
| 165 |
|
| 166 |
if __name__ == "__main__":
|
| 167 |
-
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
+
import io
|
| 3 |
import json
|
| 4 |
import hashlib
|
| 5 |
import gradio as gr
|
|
|
|
| 27 |
partial_records = []
|
| 28 |
raw_texts = []
|
| 29 |
|
| 30 |
+
for f in files:
|
| 31 |
+
raw_bytes = f.read()
|
| 32 |
+
filetype = detect_filetype(f.name, raw_bytes)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
# 1) テキスト抽出:画像/PDFはOpenAI Vision OCR、docx/txtは生文面+OpenAI整形
|
| 35 |
if filetype in {"pdf", "image"}:
|
| 36 |
+
text = extract_text_with_openai(raw_bytes, filename=f.name, filetype=filetype)
|
| 37 |
else:
|
| 38 |
base_text = load_doc_text(filetype, raw_bytes)
|
| 39 |
+
# 生テキストをそのままOpenAIへ渡し、軽く整形した全文を返す
|
| 40 |
+
text = extract_text_with_openai(base_text.encode("utf-8"), filename=f.name, filetype="txt")
|
| 41 |
|
| 42 |
+
raw_texts.append({"filename": f.name, "text": text})
|
| 43 |
|
| 44 |
+
# 2) OpenAIでセクション構造化
|
| 45 |
structured = structure_with_openai(text)
|
| 46 |
+
# 念のためルールベース正規化も適用(期間抽出など補助)
|
| 47 |
normalized = normalize_resume({
|
| 48 |
"work_experience": structured.get("work_experience_raw", ""),
|
| 49 |
"education": structured.get("education_raw", ""),
|
|
|
|
| 51 |
"skills": ", ".join(structured.get("skills_list", [])),
|
| 52 |
})
|
| 53 |
partial_records.append({
|
| 54 |
+
"source": f.name,
|
| 55 |
"text": text,
|
| 56 |
"structured": structured,
|
| 57 |
"normalized": normalized,
|
|
|
|
| 82 |
# 8) 構造化出力
|
| 83 |
result_json = {
|
| 84 |
"candidate_id": candidate_id or hashlib.sha256(merged_text.encode("utf-8")).hexdigest()[:16],
|
| 85 |
+
"files": [f.name for f in files],
|
| 86 |
"merged": merged,
|
| 87 |
"skills": skills,
|
| 88 |
"quality_score": score,
|
|
|
|
| 107 |
|
| 108 |
anon_pdf = (result_json["candidate_id"] + ".anon.pdf", anon_pdf_bytes)
|
| 109 |
|
|
|
|
| 110 |
return (
|
| 111 |
+
json.dumps(result_json, ensure_ascii=False, indent=2), # out_json(Codeへ文字列)
|
| 112 |
+
json.dumps(skills, ensure_ascii=False, indent=2), # ★ JSON→Code: ここを文字列で返す
|
| 113 |
+
json.dumps(score, ensure_ascii=False, indent=2), # out_score(Codeへ文字列)
|
| 114 |
+
summaries["300chars"],
|
| 115 |
+
summaries["100chars"],
|
| 116 |
+
summaries["onesent"],
|
| 117 |
anon_pdf,
|
| 118 |
json.dumps(commit_info or {"status": "skipped (DATASET_REPO not set)"}, ensure_ascii=False, indent=2),
|
| 119 |
)
|
|
|
|
| 127 |
label="レジュメ類 (PDF/画像/Word/テキスト) 複数可",
|
| 128 |
file_count="multiple",
|
| 129 |
file_types=[".pdf", ".png", ".jpg", ".jpeg", ".tiff", ".bmp", ".docx", ".txt"],
|
| 130 |
+
type="file"
|
| 131 |
)
|
| 132 |
candidate_id = gr.Textbox(label="候補者ID(任意。未入力なら自動生成)")
|
| 133 |
notes = gr.Textbox(label="補足メモ(任意)", lines=3)
|
|
|
|
| 138 |
out_json = gr.Code(label="統合出力 (JSON)")
|
| 139 |
|
| 140 |
with gr.Tab("抽出スキル"):
|
| 141 |
+
# ★ GradioのJSONスキーマ推論バグ回避のため Code に変更
|
| 142 |
+
out_skills = gr.Code(label="スキル一覧 (JSON)")
|
| 143 |
|
| 144 |
with gr.Tab("品質スコア"):
|
| 145 |
+
out_score = gr.Code(label="品質評価")
|
| 146 |
|
| 147 |
with gr.Tab("要約 (300/100/1文)"):
|
| 148 |
out_sum_300 = gr.Textbox(label="300字要約")
|
|
|
|
| 163 |
|
| 164 |
|
| 165 |
if __name__ == "__main__":
|
| 166 |
+
# ★ ローカル未到達環境での ValueError 回避(Space でも安全)
|
| 167 |
+
demo.launch(share=True, server_name="0.0.0.0", server_port=7860)
|