Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,5 +1,4 @@
|
|
| 1 |
import os
|
| 2 |
-
import io
|
| 3 |
import json
|
| 4 |
import hashlib
|
| 5 |
import gradio as gr
|
|
@@ -27,12 +26,15 @@ def process_resumes(files, candidate_id: str, additional_notes: str = ""):
|
|
| 27 |
partial_records = []
|
| 28 |
raw_texts = []
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
fname = os.path.basename(p)
|
|
|
|
|
|
|
|
|
|
| 33 |
filetype = detect_filetype(fname, raw_bytes)
|
| 34 |
|
| 35 |
-
# 1)
|
| 36 |
if filetype in {"pdf", "image"}:
|
| 37 |
text = extract_text_with_openai(raw_bytes, filename=fname, filetype=filetype)
|
| 38 |
else:
|
|
@@ -41,7 +43,7 @@ def process_resumes(files, candidate_id: str, additional_notes: str = ""):
|
|
| 41 |
|
| 42 |
raw_texts.append({"filename": fname, "text": text})
|
| 43 |
|
| 44 |
-
# 2)
|
| 45 |
structured = structure_with_openai(text)
|
| 46 |
normalized = normalize_resume({
|
| 47 |
"work_experience": structured.get("work_experience_raw", ""),
|
|
@@ -56,10 +58,10 @@ def process_resumes(files, candidate_id: str, additional_notes: str = ""):
|
|
| 56 |
"normalized": normalized,
|
| 57 |
})
|
| 58 |
|
| 59 |
-
# 3)
|
| 60 |
merged = merge_normalized_records([r["normalized"] for r in partial_records])
|
| 61 |
|
| 62 |
-
# 4)
|
| 63 |
merged_text = "\n\n".join([r["text"] for r in partial_records])
|
| 64 |
skills = extract_skills(merged_text, {
|
| 65 |
"work_experience": merged.get("raw_sections", {}).get("work_experience", ""),
|
|
@@ -75,13 +77,12 @@ def process_resumes(files, candidate_id: str, additional_notes: str = ""):
|
|
| 75 |
# 6) 品質スコア
|
| 76 |
score = compute_quality_score(merged_text, merged)
|
| 77 |
|
| 78 |
-
# 7)
|
| 79 |
summaries = summarize_with_openai(merged_text)
|
| 80 |
|
| 81 |
# 8) 構造化出力
|
| 82 |
-
cid = candidate_id or hashlib.sha256(merged_text.encode("utf-8")).hexdigest()[:16]
|
| 83 |
result_json = {
|
| 84 |
-
"candidate_id":
|
| 85 |
"files": [os.path.basename(p) for p in files],
|
| 86 |
"merged": merged,
|
| 87 |
"skills": skills,
|
|
@@ -91,22 +92,23 @@ def process_resumes(files, candidate_id: str, additional_notes: str = ""):
|
|
| 91 |
"notes": additional_notes,
|
| 92 |
}
|
| 93 |
|
| 94 |
-
# 9) HF Datasets
|
| 95 |
dataset_repo = os.environ.get("DATASET_REPO")
|
| 96 |
commit_info = None
|
| 97 |
if dataset_repo:
|
|
|
|
| 98 |
commit_info = persist_to_hf(
|
| 99 |
dataset_repo=dataset_repo,
|
| 100 |
record=result_json,
|
| 101 |
anon_pdf_bytes=anon_pdf_bytes,
|
| 102 |
-
parquet_path=f"candidates/{
|
| 103 |
-
json_path=f"candidates/{
|
| 104 |
-
pdf_path=f"candidates/{
|
| 105 |
)
|
| 106 |
|
| 107 |
-
anon_pdf = (
|
| 108 |
|
| 109 |
-
#
|
| 110 |
return (
|
| 111 |
json.dumps(result_json, ensure_ascii=False, indent=2),
|
| 112 |
json.dumps(skills, ensure_ascii=False, indent=2),
|
|
@@ -127,7 +129,7 @@ with gr.Blocks(title=APP_TITLE) as demo:
|
|
| 127 |
label="レジュメ類 (PDF/画像/Word/テキスト) 複数可",
|
| 128 |
file_count="multiple",
|
| 129 |
file_types=[".pdf", ".png", ".jpg", ".jpeg", ".tiff", ".bmp", ".docx", ".txt"],
|
| 130 |
-
type="filepath", #
|
| 131 |
)
|
| 132 |
candidate_id = gr.Textbox(label="候補者ID(任意。未入力なら自動生成)")
|
| 133 |
notes = gr.Textbox(label="補足メモ(任意)", lines=3)
|
|
@@ -138,7 +140,7 @@ with gr.Blocks(title=APP_TITLE) as demo:
|
|
| 138 |
out_json = gr.Code(label="統合出力 (JSON)")
|
| 139 |
|
| 140 |
with gr.Tab("抽出スキル"):
|
| 141 |
-
out_skills = gr.Code(label="スキル一覧 (JSON)") # ← gr.JSON
|
| 142 |
|
| 143 |
with gr.Tab("品質スコア"):
|
| 144 |
out_score = gr.Code(label="品質評価 (JSON)")
|
|
@@ -152,15 +154,14 @@ with gr.Blocks(title=APP_TITLE) as demo:
|
|
| 152 |
out_pdf = gr.File(label="匿名PDFダウンロード")
|
| 153 |
|
| 154 |
with gr.Tab("Datasets 保存ログ"):
|
| 155 |
-
out_commit = gr.Code(label="コミット情報
|
| 156 |
|
| 157 |
run_btn.click(
|
| 158 |
-
|
| 159 |
inputs=[in_files, candidate_id, notes],
|
| 160 |
outputs=[out_json, out_skills, out_score, out_sum_300, out_sum_100, out_sum_1, out_pdf, out_commit],
|
| 161 |
-
api_name="run",
|
| 162 |
)
|
| 163 |
|
| 164 |
|
| 165 |
if __name__ == "__main__":
|
| 166 |
-
demo.launch(
|
|
|
|
| 1 |
import os
|
|
|
|
| 2 |
import json
|
| 3 |
import hashlib
|
| 4 |
import gradio as gr
|
|
|
|
| 26 |
partial_records = []
|
| 27 |
raw_texts = []
|
| 28 |
|
| 29 |
+
# gr.Files(type="filepath") を前提に、パスで受け取り→自前で read
|
| 30 |
+
for p in files:
|
| 31 |
fname = os.path.basename(p)
|
| 32 |
+
with open(p, "rb") as fh:
|
| 33 |
+
raw_bytes = fh.read()
|
| 34 |
+
|
| 35 |
filetype = detect_filetype(fname, raw_bytes)
|
| 36 |
|
| 37 |
+
# 1) テキスト抽出:画像/PDFはOpenAI Vision OCR、docx/txtは生文面+OpenAI整形
|
| 38 |
if filetype in {"pdf", "image"}:
|
| 39 |
text = extract_text_with_openai(raw_bytes, filename=fname, filetype=filetype)
|
| 40 |
else:
|
|
|
|
| 43 |
|
| 44 |
raw_texts.append({"filename": fname, "text": text})
|
| 45 |
|
| 46 |
+
# 2) OpenAIでセクション構造化 → ルールベース正規化も適用
|
| 47 |
structured = structure_with_openai(text)
|
| 48 |
normalized = normalize_resume({
|
| 49 |
"work_experience": structured.get("work_experience_raw", ""),
|
|
|
|
| 58 |
"normalized": normalized,
|
| 59 |
})
|
| 60 |
|
| 61 |
+
# 3) 統合(複数ファイル→1候補者)
|
| 62 |
merged = merge_normalized_records([r["normalized"] for r in partial_records])
|
| 63 |
|
| 64 |
+
# 4) スキル抽出(辞書/正規表現)
|
| 65 |
merged_text = "\n\n".join([r["text"] for r in partial_records])
|
| 66 |
skills = extract_skills(merged_text, {
|
| 67 |
"work_experience": merged.get("raw_sections", {}).get("work_experience", ""),
|
|
|
|
| 77 |
# 6) 品質スコア
|
| 78 |
score = compute_quality_score(merged_text, merged)
|
| 79 |
|
| 80 |
+
# 7) 要約(300/100/1文)
|
| 81 |
summaries = summarize_with_openai(merged_text)
|
| 82 |
|
| 83 |
# 8) 構造化出力
|
|
|
|
| 84 |
result_json = {
|
| 85 |
+
"candidate_id": candidate_id or hashlib.sha256(merged_text.encode("utf-8")).hexdigest()[:16],
|
| 86 |
"files": [os.path.basename(p) for p in files],
|
| 87 |
"merged": merged,
|
| 88 |
"skills": skills,
|
|
|
|
| 92 |
"notes": additional_notes,
|
| 93 |
}
|
| 94 |
|
| 95 |
+
# 9) HF Datasets 保存
|
| 96 |
dataset_repo = os.environ.get("DATASET_REPO")
|
| 97 |
commit_info = None
|
| 98 |
if dataset_repo:
|
| 99 |
+
file_hash = result_json["candidate_id"]
|
| 100 |
commit_info = persist_to_hf(
|
| 101 |
dataset_repo=dataset_repo,
|
| 102 |
record=result_json,
|
| 103 |
anon_pdf_bytes=anon_pdf_bytes,
|
| 104 |
+
parquet_path=f"candidates/{file_hash}.parquet",
|
| 105 |
+
json_path=f"candidates/{file_hash}.json",
|
| 106 |
+
pdf_path=f"candidates/{file_hash}.anon.pdf",
|
| 107 |
)
|
| 108 |
|
| 109 |
+
anon_pdf = (result_json["candidate_id"] + ".anon.pdf", anon_pdf_bytes)
|
| 110 |
|
| 111 |
+
# dict を gr.Code で安全表示するため、文字列化して返す
|
| 112 |
return (
|
| 113 |
json.dumps(result_json, ensure_ascii=False, indent=2),
|
| 114 |
json.dumps(skills, ensure_ascii=False, indent=2),
|
|
|
|
| 129 |
label="レジュメ類 (PDF/画像/Word/テキスト) 複数可",
|
| 130 |
file_count="multiple",
|
| 131 |
file_types=[".pdf", ".png", ".jpg", ".jpeg", ".tiff", ".bmp", ".docx", ".txt"],
|
| 132 |
+
type="filepath", # ← 重要:パスで受け取る
|
| 133 |
)
|
| 134 |
candidate_id = gr.Textbox(label="候補者ID(任意。未入力なら自動生成)")
|
| 135 |
notes = gr.Textbox(label="補足メモ(任意)", lines=3)
|
|
|
|
| 140 |
out_json = gr.Code(label="統合出力 (JSON)")
|
| 141 |
|
| 142 |
with gr.Tab("抽出スキル"):
|
| 143 |
+
out_skills = gr.Code(label="スキル一覧 (JSON)") # ← gr.JSON をやめて文字列表示
|
| 144 |
|
| 145 |
with gr.Tab("品質スコア"):
|
| 146 |
out_score = gr.Code(label="品質評価 (JSON)")
|
|
|
|
| 154 |
out_pdf = gr.File(label="匿名PDFダウンロード")
|
| 155 |
|
| 156 |
with gr.Tab("Datasets 保存ログ"):
|
| 157 |
+
out_commit = gr.Code(label="コミット情報")
|
| 158 |
|
| 159 |
run_btn.click(
|
| 160 |
+
process_resumes,
|
| 161 |
inputs=[in_files, candidate_id, notes],
|
| 162 |
outputs=[out_json, out_skills, out_score, out_sum_300, out_sum_100, out_sum_1, out_pdf, out_commit],
|
|
|
|
| 163 |
)
|
| 164 |
|
| 165 |
|
| 166 |
if __name__ == "__main__":
|
| 167 |
+
demo.launch()
|