import os import io import base64 from typing import List from pdf2image import convert_from_bytes from PIL import Image from openai import OpenAI MODEL_VISION = os.environ.get("OPENAI_VISION_MODEL", "gpt-4o-mini") MODEL_TEXT = os.environ.get("OPENAI_TEXT_MODEL", "gpt-4o-mini") _client = None def _client_lazy(): global _client if _client is None: _client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY")) return _client def _img_to_base64(img: Image.Image) -> str: buf = io.BytesIO() img.save(buf, format="PNG") return base64.b64encode(buf.getvalue()).decode("utf-8") def _pdf_to_images(pdf_bytes: bytes, dpi: int = 200, max_pages: int = 8) -> List[Image.Image]: pages = convert_from_bytes(pdf_bytes, dpi=dpi) return pages[:max_pages] def extract_text_with_openai(payload: bytes, filename: str, filetype: str) -> str: """ 画像/PDF: 画像化して Vision (chat.completions) へ。 txt/docx: テキスト整形だけ実施(安定・低コスト)。 """ client = _client_lazy() # テキストの場合はそのまま整形 if filetype not in {"pdf", "image"}: text = payload.decode("utf-8", errors="ignore") sys = "You clean up Japanese resumes, preserving headings and bullet structure and removing layout noise." user = ( "以下の本文を、見出し・箇条書きを保ちつつ整形してください。不要な罫線/番号/改ページは除去:\n\n" + text ) resp = client.chat.completions.create( model=MODEL_TEXT, messages=[ {"role": "system", "content": sys}, {"role": "user", "content": user}, ], temperature=0.2, ) return resp.choices[0].message.content.strip() # 画像/PDF → 画像列へ if filetype == "pdf": images = _pdf_to_images(payload) else: images = [Image.open(io.BytesIO(payload)).convert("RGB")] vision_msgs = [ {"role": "system", "content": "You are an accurate Japanese OCR assistant for resumes."}, {"role": "user", "content": [ { "type": "text", "text": "日本語の履歴書/職務経歴書画像です。OCRして本文を日本語テキストで忠実に返してください。" }, *[ { "type": "image_url", "image_url": {"url": f"data:image/png;base64,{_img_to_base64(img)}"} } for img in images ] ]}, ] resp = client.chat.completions.create( model=MODEL_VISION, messages=vision_msgs, temperature=0.0, ) return resp.choices[0].message.content.strip() def structure_with_openai(text: str) -> dict: client = _client_lazy() sys = ( "あなたは日本語レジュメの構造化アシスタントです。入力テキストからセクションを抽出し、" "JSONで返してください。JSONキー: work_experience_raw, education_raw, certifications_raw, skills_list。" "skills_list は重複除去済み配列。各 *_raw は原文抜粋で構いません。" ) user = "以下のテキストを解析し、指定のJSONキーで返してください。\n\n" + text resp = client.chat.completions.create( model=MODEL_TEXT, messages=[ {"role": "system", "content": sys}, {"role": "user", "content": user}, ], temperature=0.2, response_format={"type": "json_object"}, ) import json as _json try: data = _json.loads(resp.choices[0].message.content) except Exception: data = {"work_experience_raw": text, "education_raw": "", "certifications_raw": "", "skills_list": []} for k in ("work_experience_raw", "education_raw", "certifications_raw"): data.setdefault(k, "") data.setdefault("skills_list", []) return data def summarize_with_openai(text: str) -> dict: client = _client_lazy() sys = "You write crisp, factual Japanese executive summaries." user = ( "以下の候補者レジュメ本文を、(1)300字、(2)100字、(3)1文 の3粒度で日本語要約してください。" "不要な記号は避け、事実を簡潔に述べてください。\n\n" + text ) resp = client.chat.completions.create( model=MODEL_TEXT, messages=[{"role": "system", "content": sys}, {"role": "user", "content": user}], temperature=0.2, ) full = resp.choices[0].message.content.strip() # ルールベース簡易抽出(フォーマット崩れでも破綻しない) one_sent = full.split("。")[0] + "。" if "。" in full else full return { "300chars": full[:600], # だいたい300字相当(マージン確保) "100chars": full[:120], "onesent": one_sent, }