Spaces:
Sleeping
Sleeping
File size: 14,633 Bytes
7b6b271 23a9367 7b6b271 23a9367 7b6b271 23a9367 7b6b271 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
"""
LLM Agent Tool for Intelligent Surf Spot Analysis.
This module provides AI-powered reasoning and natural language generation
for surf spot recommendations. It demonstrates autonomous agent behavior
by analyzing surf conditions and generating human-like explanations.
The agent supports multiple LLM providers with intelligent fallbacks:
1. OpenAI GPT-4 (primary)
2. Anthropic Claude (secondary)
3. OpenRouter (multi-model access)
4. Rule-based reasoning (always available)
Key capabilities:
- Autonomous analysis of surf conditions
- Natural language explanation generation
- Safety-focused recommendations based on skill level
- Multi-factor reasoning about wave, wind, and swell
- Contextual advice for different surf scenarios
Example:
>>> agent = SurfLLMAgent()
>>> input_data = LLMAgentInput(
... user_location="Tarifa, Spain",
... user_preferences={"skill_level": "beginner"},
... surf_spots=evaluated_spots
... )
>>> result = await agent.run(input_data)
>>> print(result.reasoning) # AI-generated explanation
Author: Surf Spot Finder Team
License: MIT
"""
import os
import json
from typing import Dict, Any, List, Optional
from pydantic import BaseModel, Field
import httpx
import logging
# Load environment variables
try:
from dotenv import load_dotenv
load_dotenv()
except ImportError:
pass
logger = logging.getLogger(__name__)
class LLMAgentInput(BaseModel):
"""Input schema for the LLM agent tool.
Attributes:
user_location: User's location for contextual recommendations.
user_preferences: Dict with skill_level, board_type, etc.
surf_spots: List of evaluated spots with scores and conditions.
reasoning_task: Type of analysis (default: "recommendation").
"""
user_location: str = Field(description="User's location")
user_preferences: Dict[str, Any] = Field(description="User surfing preferences")
surf_spots: List[Dict[str, Any]] = Field(description="Evaluated surf spots with scores")
reasoning_task: str = Field(default="recommendation", description="Type of reasoning task")
class LLMAgentOutput(BaseModel):
"""Output schema for LLM agent results.
Attributes:
success: Whether AI analysis completed successfully.
summary: Brief recommendation summary (1-2 sentences).
reasoning: Detailed AI analysis with explanations.
recommendations: List of specific actionable advice.
error: Error message if analysis failed.
"""
success: bool
summary: str = ""
reasoning: str = ""
recommendations: List[str] = []
error: str = ""
class SurfLLMAgent:
"""
LLM-powered agent for surf spot recommendations and reasoning
Demonstrates autonomous decision making and natural language understanding
"""
name = "surf_llm_agent"
description = "AI agent that provides intelligent surf spot recommendations with reasoning"
def __init__(self):
# Support multiple LLM providers
self.openai_api_key = os.getenv("OPENAI_API_KEY")
self.anthropic_api_key = os.getenv("ANTHROPIC_API_KEY")
self.openrouter_api_key = os.getenv("OPENROUTER_API_KEY")
def _get_available_provider(self):
"""Determine which LLM provider is available"""
if self.openai_api_key:
return "openai"
elif self.anthropic_api_key:
return "anthropic"
elif self.openrouter_api_key:
return "openrouter"
else:
return None
async def _call_openai(self, messages: List[Dict[str, str]]) -> str:
"""Call OpenAI API"""
async with httpx.AsyncClient() as client:
response = await client.post(
"https://api.openai.com/v1/chat/completions",
headers={
"Authorization": f"Bearer {self.openai_api_key}",
"Content-Type": "application/json"
},
json={
"model": "gpt-4o-mini",
"messages": messages,
"max_tokens": 800,
"temperature": 0.7
},
timeout=30.0
)
response.raise_for_status()
return response.json()["choices"][0]["message"]["content"]
async def _call_anthropic(self, messages: List[Dict[str, str]]) -> str:
"""Call Anthropic API"""
# Convert messages to Anthropic format
system_msg = ""
user_msgs = []
for msg in messages:
if msg["role"] == "system":
system_msg = msg["content"]
else:
user_msgs.append(msg)
async with httpx.AsyncClient() as client:
response = await client.post(
"https://api.anthropic.com/v1/messages",
headers={
"x-api-key": self.anthropic_api_key,
"Content-Type": "application/json",
"anthropic-version": "2023-06-01"
},
json={
"model": "claude-3-haiku-20240307",
"max_tokens": 800,
"system": system_msg,
"messages": user_msgs
},
timeout=30.0
)
response.raise_for_status()
return response.json()["content"][0]["text"]
async def _call_openrouter(self, messages: List[Dict[str, str]]) -> str:
"""Call OpenRouter API (multiple models)"""
async with httpx.AsyncClient() as client:
response = await client.post(
"https://openrouter.ai/api/v1/chat/completions",
headers={
"Authorization": f"Bearer {self.openrouter_api_key}",
"Content-Type": "application/json"
},
json={
"model": "meta-llama/llama-3.1-8b-instruct:free",
"messages": messages,
"max_tokens": 800,
"temperature": 0.7
},
timeout=30.0
)
response.raise_for_status()
return response.json()["choices"][0]["message"]["content"]
def _build_surf_analysis_prompt(self, input_data: LLMAgentInput) -> List[Dict[str, str]]:
"""Build the prompt for surf spot analysis"""
# Format spot data for the LLM
spots_text = ""
for i, spot in enumerate(input_data.surf_spots, 1):
spots_text += f"\n{i}. **{spot['name']}** ({spot['location']})\n"
spots_text += f" - Score: {spot['score']}/100\n"
spots_text += f" - Distance: {spot['distance_km']}km\n"
spots_text += f" - Break Type: {spot['characteristics']['break_type']}\n"
spots_text += f" - Skill Levels: {', '.join(spot['characteristics']['skill_level'])}\n"
spots_text += f" - Current Conditions: {spot['conditions'].get('wave_height', 'N/A')}m waves, {spot['conditions'].get('wind_speed', 'N/A')}kt wind\n"
spots_text += f" - Analysis: {spot['explanation'][:200]}...\n"
# Format user preferences
prefs_text = json.dumps(input_data.user_preferences, indent=2) if input_data.user_preferences else "No specific preferences"
system_prompt = """You are an expert surf forecaster and local guide AI agent with deep knowledge of surf conditions, wave physics, and surfing culture. Your role is to:
1. **Analyze** surf conditions autonomously using your expertise
2. **Reason** about which spots are best for the user's specific situation
3. **Recommend** spots with clear explanations of your decision-making process
4. **Provide** practical insights about timing, equipment, and local knowledge
Think like a local surf guide who:
- Understands how weather patterns affect waves
- Knows the personality of each surf spot
- Considers safety based on skill level
- Provides actionable advice for the session
Be conversational but expert, enthusiastic but realistic about conditions."""
user_prompt = f"""Please analyze these surf spots for a surfer in {input_data.user_location} and provide your expert recommendations:
**User Preferences:**
{prefs_text}
**Available Surf Spots:**
{spots_text}
**Your Task:**
As an expert surf agent, please:
1. **Analyze** the current conditions and scores autonomously
2. **Reason** about which spots match the user's needs best
3. **Recommend** the top 2-3 spots with clear explanations
4. **Provide** practical session advice (timing, equipment, safety)
Format your response as:
**π― SURF FORECAST ANALYSIS**
[Your autonomous analysis of conditions and patterns]
**πββοΈ TOP RECOMMENDATIONS**
[Your reasoned recommendations with explanations]
**π‘ SESSION ADVICE**
[Practical tips for the surfing session]
**π LOCAL INSIGHTS**
[Additional context about conditions, crowds, access, etc.]
Be specific about WHY you're recommending each spot based on the data and your surf expertise."""
return [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
]
def _parse_llm_response(self, response: str) -> Dict[str, str]:
"""Parse structured LLM response into components"""
sections = {
"analysis": "",
"recommendations": "",
"advice": "",
"insights": ""
}
current_section = "analysis"
lines = response.split('\n')
for line in lines:
line = line.strip()
if "π―" in line or "ANALYSIS" in line.upper():
current_section = "analysis"
elif "πββοΈ" in line or "RECOMMENDATION" in line.upper():
current_section = "recommendations"
elif "π‘" in line or "ADVICE" in line.upper():
current_section = "advice"
elif "π" in line or "INSIGHTS" in line.upper():
current_section = "insights"
elif line and not line.startswith('**'):
sections[current_section] += line + " "
return {k: v.strip() for k, v in sections.items()}
async def run(self, input_data: LLMAgentInput) -> LLMAgentOutput:
"""Execute the LLM agent reasoning"""
try:
provider = self._get_available_provider()
if not provider:
# Use fallback analysis instead of failing
logger.info("No LLM provider available, using fallback analysis")
fallback_summary = self._generate_fallback_summary(input_data)
return LLMAgentOutput(
success=True,
summary=fallback_summary,
reasoning="Analysis completed using rule-based evaluation (no LLM API key configured)",
recommendations=[f"{s['name']}: {s['score']}/100" for s in input_data.surf_spots[:3]]
)
if not input_data.surf_spots:
return LLMAgentOutput(
success=False,
error="No surf spots provided for analysis"
)
# Build the analysis prompt
messages = self._build_surf_analysis_prompt(input_data)
# Call the appropriate LLM
logger.info(f"Calling {provider} for surf analysis")
if provider == "openai":
response = await self._call_openai(messages)
elif provider == "anthropic":
response = await self._call_anthropic(messages)
elif provider == "openrouter":
response = await self._call_openrouter(messages)
# Parse the response
parsed = self._parse_llm_response(response)
# Extract recommendations as list
recommendations = []
if parsed["recommendations"]:
# Simple extraction of spot names mentioned in recommendations
for spot in input_data.surf_spots[:3]: # Top 3 spots
if spot["name"].lower() in parsed["recommendations"].lower():
recommendations.append(f"{spot['name']}: {spot['score']}/100")
return LLMAgentOutput(
success=True,
summary=f"{parsed['analysis'][:200]}..." if parsed['analysis'] else "Analysis completed",
reasoning=response, # Full LLM response
recommendations=recommendations
)
except Exception as e:
logger.error(f"LLM Agent error: {e}")
# Fallback to rule-based recommendation
fallback_summary = self._generate_fallback_summary(input_data)
return LLMAgentOutput(
success=True, # Still successful with fallback
summary=fallback_summary,
reasoning="Using fallback analysis due to LLM unavailability",
recommendations=[f"{s['name']}: {s['score']}/100" for s in input_data.surf_spots[:3]]
)
def _generate_fallback_summary(self, input_data: LLMAgentInput) -> str:
"""Generate a rule-based summary when LLM is unavailable"""
if not input_data.surf_spots:
return "No surf spots found in your area."
best_spot = input_data.surf_spots[0]
total_spots = len(input_data.surf_spots)
skill_level = input_data.user_preferences.get('skill_level', 'intermediate')
return f"""Surf analysis for {input_data.user_location}: Found {total_spots} spots within range.
Top recommendation is {best_spot['name']} with a score of {best_spot['score']}/100,
located {best_spot['distance_km']}km away. Current conditions show {best_spot['conditions'].get('wave_height', 'unknown')}m waves.
This spot is suitable for {skill_level} surfers and offers {best_spot['characteristics']['break_type']} waves."""
def create_llm_agent_tool():
"""Factory function to create the LLM agent tool"""
tool = SurfLLMAgent()
return {
"name": tool.name,
"description": tool.description,
"input_schema": LLMAgentInput.schema(),
"function": tool.run,
} |