Spaces:
Runtime error
Runtime error
| from diffusers import ( StableDiffusionControlNetPipeline, | |
| ControlNetModel, UniPCMultistepScheduler) | |
| from PIL import Image | |
| import numpy as np | |
| import torch | |
| import cv2 | |
| def controlnet_canny( | |
| image_path:str, | |
| low_th:int, | |
| high_th:int, | |
| ): | |
| image = Image.open(image_path) | |
| image = np.array(image) | |
| image = cv2.Canny(image, low_th, high_th) | |
| image = image[:, :, None] | |
| image = np.concatenate([image, image, image], axis=2) | |
| image = Image.fromarray(image) | |
| controlnet = ControlNetModel.from_pretrained( | |
| "lllyasviel/sd-controlnet-canny", | |
| torch_dtype=torch.float16 | |
| ) | |
| return controlnet, image | |
| def stable_diffusion_controlnet_img2img( | |
| stable_model_path:str, | |
| image_path:str, | |
| prompt:str, | |
| negative_prompt:str, | |
| num_samples:int, | |
| guidance_scale:int, | |
| num_inference_step:int, | |
| low_th:int, | |
| high_th:int | |
| ): | |
| controlnet, image = controlnet_canny( | |
| image_path=image_path, | |
| low_th=low_th, | |
| high_th=high_th | |
| ) | |
| pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
| pretrained_model_name_or_path=stable_model_path, | |
| controlnet=controlnet, | |
| safety_checker=None, | |
| torch_dtype=torch.float16, | |
| ) | |
| pipe.to("cuda") | |
| pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) | |
| pipe.enable_xformers_memory_efficient_attention() | |
| output = pipe( | |
| prompt = prompt, | |
| image = image, | |
| negative_prompt = negative_prompt, | |
| num_images_per_prompt = num_samples, | |
| num_inference_steps = num_inference_step, | |
| guidance_scale = guidance_scale, | |
| ).images | |
| return output | |