Spaces:
Runtime error
Runtime error
| import sse from 'k6/x/sse' | |
| import {check, sleep} from 'k6' | |
| import {SharedArray} from 'k6/data' | |
| import {Counter, Rate, Trend} from 'k6/metrics' | |
| import exec from 'k6/execution'; | |
| // Server chat completions prefix | |
| const server_url = __ENV.SERVER_BENCH_URL ? __ENV.SERVER_BENCH_URL : 'http://localhost:8080/v1' | |
| // Number of total prompts in the dataset - default 10m / 10 seconds/request * number of users | |
| const n_prompt = __ENV.SERVER_BENCH_N_PROMPTS ? parseInt(__ENV.SERVER_BENCH_N_PROMPTS) : 600 / 10 * 8 | |
| // Model name to request | |
| const model = __ENV.SERVER_BENCH_MODEL_ALIAS ? __ENV.SERVER_BENCH_MODEL_ALIAS : 'my-model' | |
| // Dataset path | |
| const dataset_path = __ENV.SERVER_BENCH_DATASET ? __ENV.SERVER_BENCH_DATASET : './ShareGPT_V3_unfiltered_cleaned_split.json' | |
| // Max tokens to predict | |
| const max_tokens = __ENV.SERVER_BENCH_MAX_TOKENS ? parseInt(__ENV.SERVER_BENCH_MAX_TOKENS) : 512 | |
| // Max prompt tokens | |
| const n_prompt_tokens = __ENV.SERVER_BENCH_MAX_PROMPT_TOKENS ? parseInt(__ENV.SERVER_BENCH_MAX_PROMPT_TOKENS) : 1024 | |
| // Max slot context | |
| const n_ctx_slot = __ENV.SERVER_BENCH_MAX_CONTEXT ? parseInt(__ENV.SERVER_BENCH_MAX_CONTEXT) : 2048 | |
| export function setup() { | |
| console.info(`Benchmark config: server_url=${server_url} n_prompt=${n_prompt} model=${model} dataset_path=${dataset_path} max_tokens=${max_tokens}`) | |
| } | |
| const data = new SharedArray('conversations', function () { | |
| const tokenizer = (message) => message.split(/[\s,'".?]/) | |
| return JSON.parse(open(dataset_path)) | |
| // Filter out the conversations with less than 2 turns. | |
| .filter(data => data["conversations"].length >= 2) | |
| .filter(data => data["conversations"][0]["from"] === "human") | |
| .map(data => { | |
| return { | |
| prompt: data["conversations"][0]["value"], | |
| n_prompt_tokens: tokenizer(data["conversations"][0]["value"]).length, | |
| n_completion_tokens: tokenizer(data["conversations"][1]["value"]).length, | |
| } | |
| }) | |
| // Filter out too short sequences | |
| .filter(conv => conv.n_prompt_tokens >= 4 && conv.n_completion_tokens >= 4) | |
| // Filter out too long sequences. | |
| .filter(conv => conv.n_prompt_tokens <= n_prompt_tokens && conv.n_prompt_tokens + conv.n_completion_tokens <= n_ctx_slot) | |
| // Keep only first n prompts | |
| .slice(0, n_prompt) | |
| }) | |
| const llamacpp_prompt_tokens = new Trend('llamacpp_prompt_tokens') | |
| const llamacpp_completion_tokens = new Trend('llamacpp_completion_tokens') | |
| const llamacpp_tokens_second = new Trend('llamacpp_tokens_second') | |
| const llamacpp_prompt_processing_second = new Trend('llamacpp_prompt_processing_second') | |
| const llamacpp_prompt_tokens_total_counter = new Counter('llamacpp_prompt_tokens_total_counter') | |
| const llamacpp_completion_tokens_total_counter = new Counter('llamacpp_completion_tokens_total_counter') | |
| const llamacpp_completions_truncated_rate = new Rate('llamacpp_completions_truncated_rate') | |
| const llamacpp_completions_stop_rate = new Rate('llamacpp_completions_stop_rate') | |
| export const options = { | |
| thresholds: { | |
| llamacpp_completions_truncated_rate: [ | |
| // more than 80% of truncated input will abort the test | |
| {threshold: 'rate < 0.8', abortOnFail: true, delayAbortEval: '1m'}, | |
| ], | |
| }, | |
| duration: '10m', | |
| vus: 8, | |
| } | |
| export default function () { | |
| const conversation = data[exec.scenario.iterationInInstance % data.length] | |
| const payload = { | |
| "messages": [ | |
| { | |
| "role": "system", | |
| "content": "You are ChatGPT, an AI assistant.", | |
| }, | |
| { | |
| "role": "user", | |
| "content": conversation.prompt, | |
| } | |
| ], | |
| "model": model, | |
| "stream": true, | |
| "seed": 42, | |
| "max_tokens": max_tokens, | |
| "stop": ["<|im_end|>"] // This is temporary for phi-2 base (i.e. not instructed) since the server expects that the model always to emit BOS | |
| } | |
| const params = {method: 'POST', body: JSON.stringify(payload)}; | |
| const startTime = new Date() | |
| let promptEvalEndTime = null | |
| let prompt_tokens = 0 | |
| let completions_tokens = 0 | |
| let finish_reason = null | |
| const res = sse.open(`${server_url}/chat/completions`, params, function (client) { | |
| client.on('event', function (event) { | |
| if (promptEvalEndTime == null) { | |
| promptEvalEndTime = new Date() | |
| } | |
| let chunk = JSON.parse(event.data) | |
| let choice = chunk.choices[0] | |
| if (choice.finish_reason) { | |
| finish_reason = choice.finish_reason | |
| } | |
| if (chunk.usage) { | |
| prompt_tokens = chunk.usage.prompt_tokens | |
| llamacpp_prompt_tokens.add(prompt_tokens) | |
| llamacpp_prompt_tokens_total_counter.add(prompt_tokens) | |
| completions_tokens = chunk.usage.completion_tokens | |
| llamacpp_completion_tokens.add(completions_tokens) | |
| llamacpp_completion_tokens_total_counter.add(completions_tokens) | |
| } | |
| }) | |
| client.on('error', function (e) { | |
| console.log('An unexpected error occurred: ', e.error()); | |
| throw e; | |
| }) | |
| }) | |
| check(res, {'success completion': (r) => r.status === 200}) | |
| const endTime = new Date() | |
| const promptEvalTime = promptEvalEndTime - startTime | |
| if (promptEvalTime > 0) { | |
| llamacpp_prompt_processing_second.add(prompt_tokens / (promptEvalEndTime - startTime) * 1.e3) | |
| } | |
| const completion_time = endTime - promptEvalEndTime | |
| if (completions_tokens > 0 && completion_time > 0) { | |
| llamacpp_tokens_second.add(completions_tokens / completion_time * 1.e3) | |
| } | |
| llamacpp_completions_truncated_rate.add(finish_reason === 'length') | |
| llamacpp_completions_stop_rate.add(finish_reason === 'stop') | |
| sleep(0.3) | |
| } | |