Spaces:
Runtime error
Runtime error
| #include "conv-transpose-1d.cuh" | |
| static __global__ void conv_transpose_1d_kernel( | |
| const int s0, const int p0, const int d0, const int output_size, | |
| const int src0_ne0, const int src0_ne1, const int src0_ne2, const int src0_ne3, | |
| const int src1_ne0, const int src1_ne1, const int src1_ne2, const int src1_ne3, | |
| const int dst_ne0, const int dst_ne1, const int dst_ne2, const int dst_ne3, | |
| const float * src0, const float * src1, float * dst) { | |
| int global_index = threadIdx.x + blockIdx.x * blockDim.x; | |
| if (global_index >= output_size) { | |
| return; | |
| } | |
| int out_index = global_index / dst_ne0; | |
| float accumulator = 0; | |
| for (int c = 0; c < src0_ne2; c++) { | |
| int idx = global_index % dst_ne0; | |
| int kernel_offset = (src0_ne0 * src0_ne1 * c) + (out_index * src0_ne0); | |
| int input_offset = src1_ne0 * c; | |
| for (int i = 0; i < src1_ne0; i++) { | |
| if (!(idx >= i*s0 && idx < i*s0 + src0_ne0)) { | |
| continue; | |
| } | |
| int weight_idx = idx - i*s0; | |
| float kernel_weight = src0[kernel_offset + weight_idx]; | |
| float input_value = src1[input_offset+i]; | |
| accumulator += kernel_weight * input_value; | |
| } | |
| } | |
| dst[global_index] = accumulator; | |
| } | |
| static void conv_transpose_1d_f32_f32_cuda( | |
| const int s0, const int p0, const int d0, const int output_size, | |
| const int src0_ne0, const int src0_ne1, const int src0_ne2, const int src0_ne3, | |
| const int src1_ne0, const int src1_ne1, const int src1_ne2, const int src1_ne3, | |
| const int dst_ne0, const int dst_ne1, const int dst_ne2, const int dst_ne3, | |
| const float * src0, const float * src1, float * dst, | |
| cudaStream_t stream) { | |
| const int num_blocks = (output_size + CUDA_CONV_TRANPOSE_1D_BLOCK_SIZE - 1) / CUDA_CONV_TRANPOSE_1D_BLOCK_SIZE; | |
| conv_transpose_1d_kernel<<<num_blocks,CUDA_CONV_TRANPOSE_1D_BLOCK_SIZE, 0, stream>>>( | |
| s0,p0,d0,output_size, | |
| src0_ne0, src0_ne1, src0_ne2, src0_ne3, | |
| src1_ne0, src1_ne1, src1_ne2, src1_ne3, | |
| dst_ne0, dst_ne1, dst_ne2, dst_ne3, | |
| src0,src1, dst); | |
| } | |
| void ggml_cuda_op_conv_transpose_1d(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { | |
| const ggml_tensor * src0 = dst->src[0]; | |
| const float * src0_d = (const float *)src0->data; | |
| const ggml_tensor * src1 = dst->src[1]; | |
| const float * src1_d = (const float *)src1->data; | |
| float * dst_d = (float *)dst->data; | |
| cudaStream_t stream = ctx.stream(); | |
| GGML_ASSERT(src0->type == GGML_TYPE_F32); | |
| GGML_ASSERT( dst->type == GGML_TYPE_F32); | |
| GGML_ASSERT(ggml_is_contiguous(src0)); | |
| GGML_ASSERT(ggml_is_contiguous(src1)); | |
| const int32_t * opts = (const int32_t *)dst->op_params; | |
| const int s0 = opts[0]; | |
| const int p0 = 0;//opts[3]; | |
| const int d0 = 1;//opts[4]; | |
| const int64_t kernel_size = ggml_nelements(src0); | |
| const int64_t input_size = ggml_nelements(src1); | |
| const int64_t output_size = ggml_nelements(dst); | |
| conv_transpose_1d_f32_f32_cuda(s0, p0, d0, output_size, | |
| src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3], | |
| src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3], | |
| dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], | |
| src0_d, src1_d, dst_d, stream); | |
| } | |