Spaces:
Runtime error
Runtime error
| struct rope_corr_dims { | |
| float v[2]; | |
| }; | |
| static float rope_yarn_ramp(const float low, const float high, const int i0) { | |
| const float y = (i0 / 2 - low) / sycl::max(0.001f, high - low); | |
| return 1.0f - sycl::min(1.0f, sycl::max(0.0f, y)); | |
| } | |
| // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn | |
| // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng. | |
| static void rope_yarn( | |
| float theta_extrap, float freq_scale, rope_corr_dims corr_dims, int64_t i0, float ext_factor, float mscale, | |
| float * cos_theta, float * sin_theta) { | |
| // Get n-d rotational scaling corrected for extrapolation | |
| float theta_interp = freq_scale * theta_extrap; | |
| float theta = theta_interp; | |
| if (ext_factor != 0.0f) { | |
| float ramp_mix = rope_yarn_ramp(corr_dims.v[0], corr_dims.v[1], i0) * ext_factor; | |
| theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix; | |
| // Get n-d magnitude scaling corrected for interpolation | |
| mscale *= 1.0f + 0.1f * sycl::log(1.0f / freq_scale); | |
| } | |
| *cos_theta = sycl::cos(theta) * mscale; | |
| *sin_theta = sycl::sin(theta) * mscale; | |
| } | |
| template<typename T, bool has_ff> | |
| static void rope_norm( | |
| const T * x, T * dst, int ne0, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows, | |
| float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, const float * freq_factors, | |
| const sycl::nd_item<3> &item_ct1) { | |
| const int i0 = 2 * (item_ct1.get_local_range(1) * item_ct1.get_group(1) + | |
| item_ct1.get_local_id(1)); | |
| if (i0 >= ne0) { | |
| return; | |
| } | |
| const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) + | |
| item_ct1.get_local_id(2); | |
| if (i0 >= n_dims) { | |
| const int i = row*ne0 + i0; | |
| dst[i + 0] = x[i + 0]; | |
| dst[i + 1] = x[i + 1]; | |
| return; | |
| } | |
| const int i = row*ne0 + i0; | |
| const int i2 = row/p_delta_rows; | |
| const float theta_base = pos[i2] * sycl::pow(theta_scale, i0 / 2.0f); | |
| const float freq_factor = has_ff ? freq_factors[i0/2] : 1.0f; | |
| float cos_theta; | |
| float sin_theta; | |
| rope_yarn(theta_base/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta); | |
| const float x0 = x[i + 0]; | |
| const float x1 = x[i + 1]; | |
| dst[i + 0] = x0*cos_theta - x1*sin_theta; | |
| dst[i + 1] = x0*sin_theta + x1*cos_theta; | |
| } | |
| template<typename T, bool has_ff> | |
| static void rope_neox( | |
| const T * x, T * dst, int ne0, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows, | |
| float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, const float * freq_factors, | |
| const sycl::nd_item<3> &item_ct1) { | |
| const int i0 = 2 * (item_ct1.get_local_range(1) * item_ct1.get_group(1) + | |
| item_ct1.get_local_id(1)); | |
| if (i0 >= ne0) { | |
| return; | |
| } | |
| const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) + | |
| item_ct1.get_local_id(2); | |
| if (i0 >= n_dims) { | |
| const int i = row*ne0 + i0; | |
| dst[i + 0] = x[i + 0]; | |
| dst[i + 1] = x[i + 1]; | |
| return; | |
| } | |
| const int i = row*ne0 + i0/2; | |
| const int i2 = row/p_delta_rows; | |
| const float theta_base = pos[i2] * sycl::pow(theta_scale, i0 / 2.0f); | |
| const float freq_factor = has_ff ? freq_factors[i0/2] : 1.0f; | |
| float cos_theta; | |
| float sin_theta; | |
| rope_yarn(theta_base/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta); | |
| const float x0 = x[i + 0]; | |
| const float x1 = x[i + n_dims/2]; | |
| dst[i + 0] = x0*cos_theta - x1*sin_theta; | |
| dst[i + n_dims/2] = x0*sin_theta + x1*cos_theta; | |
| } | |
| template <typename T> | |
| static void rope_norm_sycl( | |
| const T *x, T *dst, int ne0, int n_dims, int nr, const int32_t *pos, float freq_scale, int p_delta_rows, | |
| float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, queue_ptr stream) { | |
| GGML_ASSERT(ne0 % 2 == 0); | |
| const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1); | |
| const int num_blocks_x = (ne0 + 2*SYCL_ROPE_BLOCK_SIZE - 1) / (2*SYCL_ROPE_BLOCK_SIZE); | |
| const sycl::range<3> block_nums(1, num_blocks_x, nr); | |
| const float theta_scale = powf(freq_base, -2.0f/n_dims); | |
| dpct::has_capability_or_fail(stream->get_device(), | |
| {sycl::aspect::fp16}); | |
| if (freq_factors == nullptr) { | |
| /* | |
| DPCT1049:40: The work-group size passed to the SYCL kernel may exceed | |
| the limit. To get the device limit, query | |
| info::device::max_work_group_size. Adjust the work-group size if needed. | |
| */ | |
| stream->parallel_for( | |
| sycl::nd_range<3>(block_nums * block_dims, block_dims), | |
| [=](sycl::nd_item<3> item_ct1) { | |
| rope_norm<T, false>(x, dst, ne0, n_dims, pos, freq_scale, p_delta_rows, | |
| ext_factor, attn_factor, corr_dims, theta_scale, freq_factors, | |
| item_ct1); | |
| }); | |
| } else { | |
| /* | |
| DPCT1049:41: The work-group size passed to the SYCL kernel may exceed | |
| the limit. To get the device limit, query | |
| info::device::max_work_group_size. Adjust the work-group size if needed. | |
| */ | |
| stream->parallel_for( | |
| sycl::nd_range<3>(block_nums * block_dims, block_dims), | |
| [=](sycl::nd_item<3> item_ct1) { | |
| rope_norm<T, true>(x, dst, ne0, n_dims, pos, freq_scale, p_delta_rows, | |
| ext_factor, attn_factor, corr_dims, theta_scale, freq_factors, | |
| item_ct1); | |
| }); | |
| } | |
| } | |
| template <typename T> | |
| static void rope_neox_sycl( | |
| const T *x, T *dst, int ne0, int n_dims, int nr, const int32_t *pos, float freq_scale, int p_delta_rows, | |
| float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, queue_ptr stream) { | |
| GGML_ASSERT(ne0 % 2 == 0); | |
| const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1); | |
| const int num_blocks_x = (ne0 + 2*SYCL_ROPE_BLOCK_SIZE - 1) / (2*SYCL_ROPE_BLOCK_SIZE); | |
| const sycl::range<3> block_nums(1, num_blocks_x, nr); | |
| const float theta_scale = powf(freq_base, -2.0f/n_dims); | |
| dpct::has_capability_or_fail(stream->get_device(), | |
| {sycl::aspect::fp16}); | |
| if (freq_factors == nullptr) { | |
| stream->parallel_for( | |
| sycl::nd_range<3>(block_nums * block_dims, block_dims), | |
| [=](sycl::nd_item<3> item_ct1) { | |
| rope_neox<T, false>(x, dst, ne0, n_dims, pos, freq_scale, | |
| p_delta_rows, ext_factor, attn_factor, | |
| corr_dims, theta_scale, freq_factors, | |
| item_ct1); | |
| }); | |
| } else { | |
| stream->parallel_for( | |
| sycl::nd_range<3>(block_nums * block_dims, block_dims), | |
| [=](sycl::nd_item<3> item_ct1) { | |
| rope_neox<T, true>(x, dst, ne0, n_dims, pos, freq_scale, | |
| p_delta_rows, ext_factor, attn_factor, | |
| corr_dims, theta_scale, freq_factors, | |
| item_ct1); | |
| }); | |
| } | |
| } | |
| void ggml_sycl_op_rope( | |
| ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst, | |
| const float *src0_dd, const float *src1_dd, float *dst_dd, const queue_ptr &main_stream) { | |
| const ggml_tensor * src2 = dst->src[2]; | |
| GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16); | |
| GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); | |
| GGML_ASSERT(src0->type == dst->type); | |
| const int64_t ne00 = src0->ne[0]; | |
| const int64_t ne01 = src0->ne[1]; | |
| const int64_t nr = ggml_nrows(src0); | |
| //const int n_past = ((int32_t *) dst->op_params)[0]; | |
| const int n_dims = ((int32_t *) dst->op_params)[1]; | |
| const int mode = ((int32_t *) dst->op_params)[2]; | |
| //const int n_ctx = ((int32_t *) dst->op_params)[3]; | |
| const int n_ctx_orig = ((int32_t *) dst->op_params)[4]; | |
| // RoPE alteration for extended context | |
| float freq_base; | |
| float freq_scale; | |
| float ext_factor; | |
| float attn_factor; | |
| float beta_fast; | |
| float beta_slow; | |
| memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float)); | |
| memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float)); | |
| memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float)); | |
| memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float)); | |
| memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float)); | |
| memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float)); | |
| const bool is_neox = mode & GGML_ROPE_TYPE_NEOX; | |
| const int32_t * pos = (const int32_t *) src1_dd; | |
| const float * freq_factors = nullptr; | |
| if (src2 != nullptr) { | |
| freq_factors = (const float *) src2->data; | |
| } | |
| rope_corr_dims corr_dims; | |
| ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims.v); | |
| // compute | |
| if (is_neox) { | |
| if (src0->type == GGML_TYPE_F32) { | |
| rope_neox_sycl( | |
| (const float *)src0_dd, (float *)dst_dd, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor, | |
| attn_factor, corr_dims, freq_factors, main_stream | |
| ); | |
| } else if (src0->type == GGML_TYPE_F16) { | |
| rope_neox_sycl( | |
| (const sycl::half *)src0_dd, (sycl::half *)dst_dd, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor, | |
| attn_factor, corr_dims, freq_factors, main_stream | |
| ); | |
| } else { | |
| GGML_ABORT("fatal error"); | |
| } | |
| } else { | |
| if (src0->type == GGML_TYPE_F32) { | |
| rope_norm_sycl( | |
| (const float *)src0_dd, (float *)dst_dd, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor, | |
| attn_factor, corr_dims, freq_factors, main_stream | |
| ); | |
| } else if (src0->type == GGML_TYPE_F16) { | |
| rope_norm_sycl( | |
| (const sycl::half *)src0_dd, (sycl::half *)dst_dd, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor, | |
| attn_factor, corr_dims, freq_factors, main_stream | |
| ); | |
| } else { | |
| GGML_ABORT("fatal error"); | |
| } | |
| } | |
| (void) src1; | |
| (void) dst; | |
| (void) src1_dd; | |
| } | |