File size: 5,267 Bytes
026ee5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# Agents Architecture

DeepCritical uses Pydantic AI agents for all AI-powered operations. All agents follow a consistent pattern and use structured output types.

## Agent Pattern

All agents use the Pydantic AI `Agent` class with the following structure:

- **System Prompt**: Module-level constant with date injection
- **Agent Class**: `__init__(model: Any | None = None)`
- **Main Method**: Async method (e.g., `async def evaluate()`, `async def write_report()`)
- **Factory Function**: `def create_agent_name(model: Any | None = None) -> AgentName`

## Model Initialization

Agents use `get_model()` from `src/agent_factory/judges.py` if no model is provided. This supports:

- OpenAI models
- Anthropic models
- HuggingFace Inference API models

The model selection is based on the configured `LLM_PROVIDER` in settings.

## Error Handling

Agents return fallback values on failure rather than raising exceptions:

- `KnowledgeGapOutput(research_complete=False, outstanding_gaps=[...])`
- Empty strings for text outputs
- Default structured outputs

All errors are logged with context using structlog.

## Input Validation

All agents validate inputs:

- Check that queries/inputs are not empty
- Truncate very long inputs with warnings
- Handle None values gracefully

## Output Types

Agents use structured output types from `src/utils/models.py`:

- `KnowledgeGapOutput`: Research completeness evaluation
- `AgentSelectionPlan`: Tool selection plan
- `ReportDraft`: Long-form report structure
- `ParsedQuery`: Query parsing and mode detection

For text output (writer agents), agents return `str` directly.

## Agent Types

### Knowledge Gap Agent

**File**: `src/agents/knowledge_gap.py`

**Purpose**: Evaluates research state and identifies knowledge gaps.

**Output**: `KnowledgeGapOutput` with:
- `research_complete`: Boolean indicating if research is complete
- `outstanding_gaps`: List of remaining knowledge gaps

**Methods**:
- `async def evaluate(query, background_context, conversation_history, iteration, time_elapsed_minutes, max_time_minutes) -> KnowledgeGapOutput`

### Tool Selector Agent

**File**: `src/agents/tool_selector.py`

**Purpose**: Selects appropriate tools for addressing knowledge gaps.

**Output**: `AgentSelectionPlan` with list of `AgentTask` objects.

**Available Agents**:
- `WebSearchAgent`: General web search for fresh information
- `SiteCrawlerAgent`: Research specific entities/companies
- `RAGAgent`: Semantic search within collected evidence

### Writer Agent

**File**: `src/agents/writer.py`

**Purpose**: Generates final reports from research findings.

**Output**: Markdown string with numbered citations.

**Methods**:
- `async def write_report(query, findings, output_length, output_instructions) -> str`

**Features**:
- Validates inputs
- Truncates very long findings (max 50000 chars) with warning
- Retry logic for transient failures (3 retries)
- Citation validation before returning

### Long Writer Agent

**File**: `src/agents/long_writer.py`

**Purpose**: Long-form report generation with section-by-section writing.

**Input/Output**: Uses `ReportDraft` models.

**Methods**:
- `async def write_next_section(query, draft, section_title, section_content) -> LongWriterOutput`
- `async def write_report(query, report_title, report_draft) -> str`

**Features**:
- Writes sections iteratively
- Aggregates references across sections
- Reformats section headings and references
- Deduplicates and renumbers references

### Proofreader Agent

**File**: `src/agents/proofreader.py`

**Purpose**: Proofreads and polishes report drafts.

**Input**: `ReportDraft`
**Output**: Polished markdown string

**Methods**:
- `async def proofread(query, report_title, report_draft) -> str`

**Features**:
- Removes duplicate content across sections
- Adds executive summary if multiple sections
- Preserves all references and citations
- Improves flow and readability

### Thinking Agent

**File**: `src/agents/thinking.py`

**Purpose**: Generates observations from conversation history.

**Output**: Observation string

**Methods**:
- `async def generate_observations(query, background_context, conversation_history) -> str`

### Input Parser Agent

**File**: `src/agents/input_parser.py`

**Purpose**: Parses and improves user queries, detects research mode.

**Output**: `ParsedQuery` with:
- `original_query`: Original query string
- `improved_query`: Refined query string
- `research_mode`: "iterative" or "deep"
- `key_entities`: List of key entities
- `research_questions`: List of research questions

## Factory Functions

All agents have factory functions in `src/agent_factory/agents.py`:

```python
def create_knowledge_gap_agent(model: Any | None = None) -> KnowledgeGapAgent
def create_tool_selector_agent(model: Any | None = None) -> ToolSelectorAgent
def create_writer_agent(model: Any | None = None) -> WriterAgent
# ... etc
```

Factory functions:
- Use `get_model()` if no model provided
- Raise `ConfigurationError` if creation fails
- Log agent creation

## See Also

- [Orchestrators](orchestrators.md) - How agents are orchestrated
- [API Reference - Agents](../api/agents.md) - API documentation
- [Contributing - Code Style](../contributing/code-style.md) - Development guidelines