Spaces:
Running
Running
File size: 10,643 Bytes
016b413 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 |
# Writer Agents Usage Examples
This document provides examples of how to use the writer agents in DeepCritical for generating research reports.
## Overview
DeepCritical provides three writer agents for different report generation scenarios:
1. **WriterAgent** - Basic writer for simple reports from findings
2. **LongWriterAgent** - Iterative writer for long-form multi-section reports
3. **ProofreaderAgent** - Finalizes and polishes report drafts
## WriterAgent
The `WriterAgent` generates final reports from research findings. It's used in iterative research flows.
### Basic Usage
```python
from src.agent_factory.agents import create_writer_agent
# Create writer agent
writer = create_writer_agent()
# Generate report
query = "What is the capital of France?"
findings = """
Paris is the capital of France [1].
It is located in the north-central part of the country [2].
[1] https://example.com/france-info
[2] https://example.com/paris-info
"""
report = await writer.write_report(
query=query,
findings=findings,
)
print(report)
```
### With Output Length Specification
```python
report = await writer.write_report(
query="Explain machine learning",
findings=findings,
output_length="500 words",
)
```
### With Additional Instructions
```python
report = await writer.write_report(
query="Explain machine learning",
findings=findings,
output_length="A comprehensive overview",
output_instructions="Use formal academic language and include examples",
)
```
### Integration with IterativeResearchFlow
The `WriterAgent` is automatically used by `IterativeResearchFlow`:
```python
from src.agent_factory.agents import create_iterative_flow
flow = create_iterative_flow(max_iterations=5, max_time_minutes=10)
report = await flow.run(
query="What is quantum computing?",
output_length="A detailed explanation",
output_instructions="Include practical applications",
)
```
## LongWriterAgent
The `LongWriterAgent` iteratively writes report sections with proper citation management. It's used in deep research flows.
### Basic Usage
```python
from src.agent_factory.agents import create_long_writer_agent
from src.utils.models import ReportDraft, ReportDraftSection
# Create long writer agent
long_writer = create_long_writer_agent()
# Create report draft with sections
report_draft = ReportDraft(
sections=[
ReportDraftSection(
section_title="Introduction",
section_content="Draft content for introduction with [1].",
),
ReportDraftSection(
section_title="Methods",
section_content="Draft content for methods with [2].",
),
ReportDraftSection(
section_title="Results",
section_content="Draft content for results with [3].",
),
]
)
# Generate full report
report = await long_writer.write_report(
original_query="What are the main features of Python?",
report_title="Python Programming Language Overview",
report_draft=report_draft,
)
print(report)
```
### Writing Individual Sections
You can also write sections one at a time:
```python
# Write first section
section_output = await long_writer.write_next_section(
original_query="What is Python?",
report_draft="", # No existing draft
next_section_title="Introduction",
next_section_draft="Python is a programming language...",
)
print(section_output.next_section_markdown)
print(section_output.references)
# Write second section with existing draft
section_output = await long_writer.write_next_section(
original_query="What is Python?",
report_draft="# Report\n\n## Introduction\n\nContent...",
next_section_title="Features",
next_section_draft="Python features include...",
)
```
### Integration with DeepResearchFlow
The `LongWriterAgent` is automatically used by `DeepResearchFlow`:
```python
from src.agent_factory.agents import create_deep_flow
flow = create_deep_flow(
max_iterations=5,
max_time_minutes=10,
use_long_writer=True, # Use long writer (default)
)
report = await flow.run("What are the main features of Python programming language?")
```
## ProofreaderAgent
The `ProofreaderAgent` finalizes and polishes report drafts by removing duplicates, adding summaries, and refining wording.
### Basic Usage
```python
from src.agent_factory.agents import create_proofreader_agent
from src.utils.models import ReportDraft, ReportDraftSection
# Create proofreader agent
proofreader = create_proofreader_agent()
# Create report draft
report_draft = ReportDraft(
sections=[
ReportDraftSection(
section_title="Introduction",
section_content="Python is a programming language [1].",
),
ReportDraftSection(
section_title="Features",
section_content="Python has many features [2].",
),
]
)
# Proofread and finalize
final_report = await proofreader.proofread(
query="What is Python?",
report_draft=report_draft,
)
print(final_report)
```
### Integration with DeepResearchFlow
Use `ProofreaderAgent` instead of `LongWriterAgent`:
```python
from src.agent_factory.agents import create_deep_flow
flow = create_deep_flow(
max_iterations=5,
max_time_minutes=10,
use_long_writer=False, # Use proofreader instead
)
report = await flow.run("What are the main features of Python?")
```
## Error Handling
All writer agents include robust error handling:
### Handling Empty Inputs
```python
# WriterAgent handles empty findings gracefully
report = await writer.write_report(
query="Test query",
findings="", # Empty findings
)
# Returns a fallback report
# LongWriterAgent handles empty sections
report = await long_writer.write_report(
original_query="Test",
report_title="Test Report",
report_draft=ReportDraft(sections=[]), # Empty draft
)
# Returns minimal report
# ProofreaderAgent handles empty drafts
report = await proofreader.proofread(
query="Test",
report_draft=ReportDraft(sections=[]),
)
# Returns minimal report
```
### Retry Logic
All agents automatically retry on transient errors (timeouts, connection errors):
```python
# Automatically retries up to 3 times on transient failures
report = await writer.write_report(
query="Test query",
findings=findings,
)
```
### Fallback Reports
If all retries fail, agents return fallback reports:
```python
# Returns fallback report with query and findings
report = await writer.write_report(
query="Test query",
findings=findings,
)
# Fallback includes: "# Research Report\n\n## Query\n...\n\n## Findings\n..."
```
## Citation Validation
### For Markdown Reports
Use the markdown citation validator:
```python
from src.utils.citation_validator import validate_markdown_citations
from src.utils.models import Evidence, Citation
# Collect evidence during research
evidence = [
Evidence(
content="Paris is the capital of France",
citation=Citation(
source="web",
title="France Information",
url="https://example.com/france",
date="2024-01-01",
),
),
]
# Generate report
report = await writer.write_report(query="What is the capital of France?", findings=findings)
# Validate citations
validated_report, removed_count = validate_markdown_citations(report, evidence)
if removed_count > 0:
print(f"Removed {removed_count} invalid citations")
```
### For ResearchReport Objects
Use the structured citation validator:
```python
from src.utils.citation_validator import validate_references
# For ResearchReport objects (from ReportAgent)
validated_report = validate_references(report, evidence)
```
## Custom Model Configuration
All writer agents support custom model configuration:
```python
from pydantic_ai import Model
# Create custom model
custom_model = Model("openai", "gpt-4")
# Use with writer agents
writer = create_writer_agent(model=custom_model)
long_writer = create_long_writer_agent(model=custom_model)
proofreader = create_proofreader_agent(model=custom_model)
```
## Best Practices
1. **Use WriterAgent for simple reports** - When you have findings as a string and need a quick report
2. **Use LongWriterAgent for structured reports** - When you need multiple sections with proper citation management
3. **Use ProofreaderAgent for final polish** - When you have draft sections and need a polished final report
4. **Validate citations** - Always validate citations against collected evidence
5. **Handle errors gracefully** - All agents return fallback reports on failure
6. **Specify output length** - Use `output_length` parameter to control report size
7. **Provide instructions** - Use `output_instructions` for specific formatting requirements
## Integration Examples
### Full Iterative Research Flow
```python
from src.agent_factory.agents import create_iterative_flow
flow = create_iterative_flow(
max_iterations=5,
max_time_minutes=10,
)
report = await flow.run(
query="What is machine learning?",
output_length="A comprehensive 1000-word explanation",
output_instructions="Include practical examples and use cases",
)
```
### Full Deep Research Flow with Long Writer
```python
from src.agent_factory.agents import create_deep_flow
flow = create_deep_flow(
max_iterations=5,
max_time_minutes=10,
use_long_writer=True,
)
report = await flow.run("What are the main features of Python programming language?")
```
### Full Deep Research Flow with Proofreader
```python
from src.agent_factory.agents import create_deep_flow
flow = create_deep_flow(
max_iterations=5,
max_time_minutes=10,
use_long_writer=False, # Use proofreader
)
report = await flow.run("Explain quantum computing basics")
```
## Troubleshooting
### Empty Reports
If you get empty reports, check:
- Input validation logs (agents log warnings for empty inputs)
- LLM API key configuration
- Network connectivity
### Citation Issues
If citations are missing or invalid:
- Use `validate_markdown_citations()` to check citations
- Ensure Evidence objects are properly collected during research
- Check that URLs in findings match Evidence URLs
### Performance Issues
For large reports:
- Use `LongWriterAgent` for better section management
- Consider truncating very long findings (agents do this automatically)
- Use appropriate `max_time_minutes` settings
## See Also
- [Research Flows Documentation](../orchestrator/research_flows.md)
- [Citation Validation](../utils/citation_validation.md)
- [Agent Factory](../agent_factory/agents.md)
|